AD-A243 800
LT

1 omei. A -

j ik docurnent has been approved
- » -1 =] > N .. -

i b public release and sale its

o Ghaeloaton is unlimited,

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

| This
| for
Loy

AFIT/GE/ENG/91D-19

sk

A TIME-DEPENDENT ADAPTIVE FILTER
FOR COCHANNEL INTERFERENCE
REDUCTION

THESIS

Matthew Hunter Foster
Captain, USAF

AFIT/GE/ENG/91D-19

of‘uﬁm has ann approved
r public release and sale; its
ibution is unlimited, f

Approved for public release; distribution unlimited

1-18993)
“llni\ll\\‘ll Ll l\\\il\MlM i 91 1224 029

AFIT/GE/ENG/91D-19

A TIME-DEPENDENT ADAPTIVE FILTER
FOR COCHANNEL INTERFERENCE
REDUCTION

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the O e 1
it L S PR e emr e i
. £ . it LA PP,
Requirements for the Degree of AR AN \‘) !
1 ;';!_: » .
- 15 |
Master of Science in Electrical Engineering Yoo 13 i
BRI . - ;
e e e LTI
By
Dp; '.";‘ i.is-_: . ,’ ---------------------- 5
Matthew Hunter Foster, B.S.E.E. — e H
Avaln oL L T ._§
. = M L W)
Captain, USAF e S T
- RV LV S T i
.;:- t : :‘ . : ;; 4 s

December, 1991

Approved for public release; distribution unlimited

B P P SV S

. .
B SR R K et L 2 i i e ma

Acknowledgments

I would like to express my grateful appreéiatation to the many people without
whose help this thesis would not have been completed. First and formost 1 must
thank/my most capable advisor, Mr. Martin P. DeSimio. When things got sticky,
Marty always got me unstuck and moving in the right direction. The things that

are right about this thesis are thanks to him.

[am grateful also to the other members of my committee, Lt Col David Nor-
man, and Capt Mark Mehalic. Capt Mehalic first introduced me to the subject of
Communications at the graduate level, and it was his enthusiasm that sprarked my
initial interest in this thesis topic. Col Norman undertook the monumental task of
introducing my to' Random Signal Theory, and provided me with the tools I needed

to complete the theoretical portions of this thesis.

Finally, I am deeply indebted to my wife, Vicki, my daughter Adrienne, and my
son Ben, who supported me with love, kind words, and encouragement throughout
. my stay at AFIT. Had any one of theni not given me the strength and support that

they did, this thesis would not have come to fruition.

Matthew Hunter Foster

Table of Contents

Page

Acknowledgments. L oL Lo i
Tableof Contents i
Listof Figures e vi
Listof Tables vili
Abstract 1X
I. Introduction 1-1
1.1 Background 1-1

12 Problsm Statement 1-2

1.3 Scope e 1-2

14 Approach 1-3

1.5 Organization 1-3

II. Background0 ... 2-1
21 Introduction 2-1

2.2 Cyclostationary Signals 2-1

23 AdaptiveFiltering Lo L. 2-5

2.3.1 Some Preliminaries. 2-5

2.3.2 The Least Mean Squared (LMS) Algorithm. . 2-8

2.3.3 Time Dependent Adaptive Filtering. 2-11

2.4 Chapter Summary 2-11

il

IT1.

V.

Simulation Implementation and Verification

............

3.1 Introduction::...
3.2 Top Level Description of the Simulation
3.2.1 BER Version and LC Version

3.2.2 Input, Output, Notation, and Definitions.

3.3 Simulation Details

3.3.1 Data Generator..

............

= ®= 8 e s e a2 e s 3 & .

3.3.2 Finite Impulse Response Low Pass Filters. . .

3.3.3 Data Formatter
3.3.4 Modulator and Demodulator
335 NoiseGenerator

3.3.6 Time Independent Adaptive Filter (TIAF) . .
3.3.7 Time Dependent Adaptive Filter (TDAF) . .

3.4 Code Verification

3.5 Chapler Summary
Resuits e e
4.1 Inlroduction

4.2 Simulation in a Noisy Environment

4.2.1 Improvement Factor.

4.2.2 Comparison of Filtered Demodulated Signals.

4.2.3 Comparison of MSE Learning Curves..
424 BitErrorRate
425 Summary o e e
4.3 Simulaiion in Interference oL L. L
4.3.3 Improvemeni Factor.

4.3.2 Comparison of Filtered Demodulated Signals.
4.3.

3 Comparison of MSE Learning Curves.

iv

Appendix A.
Appendix B.
Appendix C.
Appendix D.

Bibliography

Input Parameters and Qutput Files for the BER Version

434 BitErrorRate
4.3.5 Summary.
4.4 Varying the Baud Rate-of the Interferer
4.5 " Varying the Carrier Frequency of the SNOI
4.6 Chapter Summary
V. Conclusions @nd Recommendations
5.1 Cc‘mclusions..............
5.2 Recommendations

Input Parameters and Output Files for the LC Version

Source Code for the BER Version

Source Code for the LC Version

* * s s = 8 & & s & s = T 2 o 2 & 2 s »

‘P

.............

.............

Page
4-22

4-22

4-23

4-23

4-25

Figure

2.1. A quadratic mean squared error surface. The verticle axis is £ and-

List of Figures

the horizontal axes are the filter weights
3.1. Signal flow through the simulation
3.2. An Adaptive Linear Combiner
3.3. Pseudocode for the TIAT algorithm
24, A TDAF implemented as a parallel bank of TIAFs
3.5. The impulse train described by Eq 3.12 sampled every T
3.6. Stationarization of a periodic pulse train by a TDAF
3.7. Pseudocode for the TDAF algorithm
3.8. Convergence of the adaptive filters with no interference or noise: a)

the desired signal; b) the TIAF response; ¢) the TDAF response.

. Imprevement factor as a function of SNR

The desired signal, TDAF respouse, and TIAT response for 0 dB
SNR ...

3. The desired signal, TDAF response, and TIAF response for -5 dB

. MSE learning curves for the TDAF and TIAF for 0 dB SNR .

MSE learning curves for the TDAF and TIAF for -5 dB SNR . .

vi

Page

4-4

4-8
4-9
4-10

Figure
4.9. MSE learning curves for the TDAT and TIAT for -10 dB:SNR-. .
4.10. MSE learning curves-for the TDAF and TIAT for -15 dB-SNR:: .
4.11. MSE learning curves for the TDAF and TIAT for -20- dB:SNR.. .
4.12. Improvement factor as a function of SIR.

4.12. The desired signal, TDAT response, and TIAF response for 0-dB
SIR . . . e

4.14. The desired signal, TDAF response, and TIAT response for -5 dB
SIR . . e e

4.15. The desired signal, TDAF responsc, and TIAT response for -10 dR
SIR . . e

4.16. The desired signal, TDAF response, and TIAT response for -15 dB3
SIR . e e e

4.17. The desired signal, TDAF response, and TIAF response for -20 dB
SIR . . . e

4.18. The SNOI present in Figures 4.13 through 4.17
4.19. MSE learning curves for the TDAF and TIATF for 0 dB SIR . . .
4.20. MSE learning curves for the TDAI" and TIAF for -5 dB SIR . . .
4.21. MSE learning curves for the TDAF and TIAF for -10 dB SIR. . .
4.22. MSE learning curves for the TDAI" and TIAT for -15 dB SIR . .
4.23. MSE learning curves for the TDAF and TIAF for -20 dB SIR . .
4.24. MSE as a function relative baud rate-at various SIRs for the TDAF
4.25. MSE as a function relative baud rate at various SIRs for the TIAF

4.26. MSE as a [unction SNOI carrier frequency. SOI carrier frequency
fixedab 6 Hz

vii

List of Tables
‘able Page
4.1. SOI carrier amplitude and noise gain for noisy environment simu-
lations e e e e e 4-2

4.2. Input parameters for noisy environment simulations for the BER

VETSION « - o v v e e e e e e e e e e e e e e e e 4-2

4.3. Input parameters for noisy environment simulations for the LC ver-

3T+ K 4-3
4.4. MSE data for simulations in AWGN 4-5
4.5. BER for five simulations in a noisy environment 4-12

4.6. SOI and SNOI carrier amplitude for interference environment sim-
ulations e 4-13

4.7. Input parameters for interference environment simulations for the

BER version e 4-14
4.8. Input parameters for interference environment simulations for the

LCwversion 4-15
4.9. MSE data for simulations in interference 4-15
4.10. BER for five Simulations in Interference 4-22

viil

AFIT/GE/ENG/91D-19

g Abstract

This thesis presents a Time Dependent Adaptive Filter (TDAF) which exploits
the cyclostationarity of digitally modulated communications signals and-seeks to im-
prove the Signal to Interference Ratio (SIR) and Signal to Noise Ratio (SNR.) of such
signals. The TDAF is imbedded in a computer simulation of a simple communica-
tion system consisting of a data source, data formatter, pulse shaping filter, BPSK
modulator, and demodulator. In the simulation the TDAF and a Time Independent
Adaptive Filter (TIATF) attempt to extract the Signal of Interest (SOI) from noise
or interference. The criteria of Mean Squared Error (MSE) is used as the primary
means to compare the performance of the two adaptive filiers. Plots of MSE im-
provement in interference and MSE improvement in noise are presented. For the
case of interference, the improvement is measured as a function of the baud rate of
the intereference signal, and carrier frequency of the interference signal. It is shown
that with respect to the TIAF, the TDAF provides up to 12 dB of improvement.
Bit Error Rates (BER) for several simulations are presented. The data indicate that
signficant improvements in BER might be expected when a TDAF is used in lieu of
a TIAF.
P

—

/
/

H

X

A TIME-DEPENDENT ADAPTIVE FILTER
FOR COCHANNEL INTERFERENCE
REDUCTION

I Introduction

1.1 Background

The advent of frequency reuse, particularly in satellite communications, has
made the task of recovering digitally modulated signals more challenging. Unoccu-
pied frequencies in the electromagnetic spectrum either do not exist or-are imprac-
tical for use due to their high frequency or poor channel performance (in the O-
and H,0 absorption bands, for instance). A single communication system may re-
use frequencies up to six times through polarization and spatial (antenna pointing)
reuse techniques. INTELSAT V1is an example of such a system (3:99).

The classical technique of applying the signal of interest (SOI) to a relatively

narrow passband filter can be of limited effectiveness when the SOI has been cor-

rupted by another signal (or signals) not of interest (SNOI) whose spectral com-
ponents overlap those of the SOI. Of course, with only knowledge of the center
frequency and spectral width of the SOI, a digital filter can be readily designed that
limits power outside the spectral region of interest (5:403-489). The impulse response
of sich a filter is fixed. Hence, if the characteristics of the SNOI changes, the filter
cannol appropriately adapt to the new conditions.

If, on the other hand, the filter coefficients are allowed to vary so as o minimize
some error criteria. the impulse response will no longer be fixed. Then, even if the
characteristics of the SNOI change, the filter can adapt to a new *optimum’ solution.
Such a filter is referred to as a *Time Independent Adaptive Filter’ (TIAF); ‘adaptive’
because the impulse response changes according to the characieristics of the input,
and ‘time independent’ because the changes in the impuise response are not an
explicit fun<tion of time, but rather a function only of the input to the filter. An
example of a TIAF is the adaptive lincar combiner (ALC) (10:15-26).

The error in a TIAF is a quadratic function of the filter weights: The quadratic
surface resembles a bowl (10:19, 20). The bottom of the bowl représents the .mini-
mum error, and the filter strives to achieve that operating point. When the statistics
of the input are stationary or nearly stationary (change very slowly), the filter will be
able to achieve and maintain a nearly optimum configuration (11). Unfortunately,
all digitally modulated waveforms of interest in modern communication theory are
not stationary. They exhibit some periodicity in their statistics referred to as cyclo-
stationarity (2:16-18). The TIAF is in general not able to adapt quickly enough to

‘track’ the optimum solution that exists for a cyclostationary SOI

What is needed is some way to make the input to the filter stationary so
that it may better track the optirium solution. One way to do this when filtering
samples from a digitally modulated signal is to implement the filter by using multiple
TIATs arranged in parallel, and commutating the output from each of the TIAFs.
Then, each TIAF has its own optimum solution, or ‘bowl’, and the filter can acheive
significantly reduced overall MSE (1:681). The selection of the proper TIAF is an
explicit function of time, and hence, an adaptive filter so constructed is called a ‘time
dependent adaptive filter’ (TDAT).

1.2 Problem Stalement

This thesis presents a TDAF which can be used te improve the signal to in-
terference ratio (SIR) and signal to noise ratio (SNR) of digitally modulated com-
munications signals. The performance improvement of the TDAF over the TIATF

is determined based on the application of varicus metrics, including Mean Square

Error (MSE) and Bit Error Rate (BER).

1.3 Scope

The intent of this thesis is to produce a computer simulation of a simple digital
communications system that can be used to evaluate the performance of a TDAT
under realistic conditions. A binary phase shift keyed (BPSK) signal-is used as both
the SOI and the SNOI. Comparisons of performance are made between the TDAI
and the TIAF for varying SNR, SIR, interference carrier frequency, and interference
data rate.

1.4 Approach

The approach used to complete this research is divided into three phases. The
first phase has two parts. The first part is basic research into adaptive filters and
cyclostationary signals. The second part is the development of the framework for
the computer simulation of the communication system. The second phase is the
development of the TDAF itself, and its insertion into the simulation. The last
phase is the characterization of the TDAF. Measurement of the TDAFs ability to
accurately recover the signal is made by running simulations for various interference

characterizations.

1.5 Organization

Chapter II provides a discussion of the fundamental concepts of adaptive filters
and cyclostationarity. Chapter III contains details on the construction of the TDAF
simulation. Chapter IV presents the results and analysis of data generated by the
environment. The fifth and final chapter contains specific conclusions along with

recommendations {or future research.

1-3

II. Buckground

2.1 Introduction

In order to understand how Time Dependent Adaptive Filters (TDAF) im-
prove the Signal to Noise Ratio (SNR) and Signal to Interference Ratio (SIR) of
digitally modulated bandpass signals, there are several concepts that need to be un-
derstood. Among these are the concepts of cyclostationarity and adaptive filtering.
In presenting the idea of cyclostationarity, this chapter will provide the definition
of cyclostationarity, and give an example of a cyclostationary signal. Next, a briel
introduction to adaptive filtering will be presented. The Adaptive Linear Combiner
(ALC) which is a type of Time Independent Adaptive Filter (TIAF) will be pre-
sented. The TIAF is presented first because the TDAF can be implemented by com-
bining multiple TIAFs in parallel. Finally, the concept of Time Dependent Adaptive
Filtering will be briefly introduced. A thorough description of the implementation
of the TDAF is resetved for Chapter III.

2.2 Cyclostationary Signals

A process is cyclostationary if it has a periodic components in its autocorre-
lation function (2:20). The Fourier series expansion of a periodic (with period Tp)
function z(?) is

oo
z(l) = z C,e??! (2.1)
n=—oo
where
a= =
=T
where the coefficient at any given {requency is
‘ 1 . —j27ot 99
C, = T I a(t)e dt (2.2)
[/}
= (m(t)e-ﬂzont) (?3)

Recall that the power spectral density (PSD) of any function is the Fourier transform
of its autocorrelation. Therefore, if it can be shown that the PSD of a function

exhibits delta functions, then the function is cyclostationary.

For ergodic functions, the classical autocorrelation function is given by

Ryz(7) = (2(t)2(t + 7)) (2.4)
where
x(t) = -the function of interest
7 = the lag value

Notice that it is mathematically equivalent to write Eq 2.4 as
Ree(T) = (2(t + 7/2)2(t — 7/2)) (2.5)

even though Eq 2.5 is not physically realizable (because of its noncausal nature).

The cyclic correlation function is a straightforward extension of this definition

(2:19)

RE(r) = {a{t)alt +)e727) (26)
where
2(t) = the function of interest
7 = the lag value
o = the cycle frequency

There are two equivalent interpretations of Eq 2.6. First, the cyclic autocorrelation
function is the standard autocorrelation but with a time and frequency shifted ver-
sion of itself. Referring to Eq 2.2, it can be seen thal a second interpretation is that
the cyclic autocorrelation is the Fourier coefficient of the standard autocorrelation
al a given cycle frequency, o (2:17- 20). Notice that when o = 0, Eq 2.6 reduces to

the standard autocorrelation function (2:20).

Wide Sense Stationary (WSS) random processes can be either cyclostationary
or purely stationary, but not both. Purely stationary processes are those for which

no o # 0 can be found to satisfy R(7) # 0 except perhaps for the degenerate case
where 7 = 0 (2:20).

If BEq 2.6 is re-expressed in the form of Eq 2:5, and e=9%t is factored into
e=imet+7/2) and e~i7e(t=7/2) then a third interpretation becomes-apparént. The cyclic

autocorrelation function can be written as a conventional:crosscorrelation :(-2:19)’,

RE(r) = ([o(t+ /e T a(t = 7[2)ete=m1))

= (u(t+7/20(t—1/2))
= Ruu(7)

(2.7)
(2.8)

where

u(t) = a(t)e” i
v(1) a(t)eFim!

Assuming that at least one of u(t) or v(t) is a zero mean process, the conven-
tional cross-correlation coefficient is (8:124)

T =——-———Ruu(7) 2.9
) S R 29

A normalization factor for the cyclic autocorrelation follows from Eq 2.9 and is called
the temporal correlation coefficient (2:20)

>
=~

ary & BE(7)

(2.10)

The following example was taken from (2) and is summarized here to show
how to calculate a cyclic autocorrelation.

Given a real random purely stationary signal with zero mean, «(t) we can write

{a(t)) =0 (2.11)

We require that the autocorrelation of a(t) be nonzero:

(a(t+ 7/2)a(t-7/2)) £ 0 (2.12)

Since we defined a(t) to be purely stationnry (rather than cyclostationary), we know that
(a(t +7/2)a(t - 7/2)e” 72y = 0 for all a # 0 (2:13)

Eq 2.13 guarantees thai
(a(t)e™¥) = 0 forall @ # 0 (2.14)

Now consider the amplitude-modulated sinewave

z(t)

a(t) cos(2x fot + 6) (2.15)

1 209 S0
5(4(1.)[6’(‘”"“*”) 4 =i Erfot40)] (2.16)

Multiplying «() by cos(27 fot + 8) simply shifts the spectrum of a(t) to L f, (and reduces
its magnitude). Therefore, since Eq 2.14 guarantees that «(t) contains no finite-strength
additive sinusoidal components, it is clear that 2(t) contains no finite-strength additive
sinusoidal components either. In other words, there are not delta functions in its power
spectral density function. If we apply the non-linear transformation that is iuside the time

averaging operator of Eq 2.5 to () we get

(1) = 2(t4+7/2)2(t-7/2)
= ol 7/2)alt = T[2)LT oI

+6_,'(.1:jox+zo)+e-j(.1x_{ot+20)] (2.17)
Next, we apply the definition of the cyclic autocorrelation function to y.(1):

el 1 § 7)o 3=
(e = 2Tl 7/Da(t - 7/2)e)
+%e'””°’(a(t +7/2)a(t - 7/2)eIt)
+%eiza(a(t +7/2)a(t — 7/2)c i o=2olty

1) i2=(ce 42
+¢7 la(t + 7/2)a(t — 7/2)e~I2= (e +2Ue)ty (2.18)

Tq 2.13 guarantees that the first two terms of Eq 2.18 are zero. The last two terms of
Eq 2.18 can only be nonzero if the exponent inside the time averaging operator-is zero.

‘Clearly, that happens when o = £2f — 0. Substituting o = £2f — 0 into Eq 2.18, and

noting that Re(7) = (a(t + 7/2)a(t -~ 7/2)) we have the cyclic autocorrelation function

function for z(t):

§eE? Ry(7), for o = +2f,
RI(7) = q LR(7)cos(27 for), fora =0 (2.19)
l 0, otherwise

Refer:ing to Eq 2.7, the correlation of the frequency shifted versions of z(t) represented
by u(t) and v(?) should not be surprising. After all, 2(¢) was formed by frequency shifting

a(t) by fo, and the two spectral images of (%) are s~parated by 2 f,.

2.3 Adaptive Filtering

2.3.1 Some Preliminaries. Given a real WSS random: process X(t), we know

that the autocorrelation of X(%) can be written as (8:143)

Ryx(r) = E{X()X{t + 7))

Fan
D
[
=)

v

where

E{-} = the statistical expectaticr eperator

=
!

= the lag value

If we assume X (£) is an ergodic process, then we can restrict our attention to a single
member function of X(t), x(t) (8-:178). Turthermore, we can sample z(t) starting

at some arbitrary point k so that we are left with a discrete sequence z[k]. For N

samples, this sequence can be represented as a column vector Xy

T

3

X

(2:21)

i ThaN i)]

forming an N element array. Now the val..: <. the aatocorrelation at a specific lag

value can be calculated as (11)

' /V—l
bez[n] = 1_’ > alklalk + n) (2.22)
k=0
or equivalently in vector notation
]. T ¢
¢xz[n] = ﬁxl_ Xk+71. (2.).3)
where
n = the lag value
N = the number of samples in Jhe data vector
k= the seqence number or vector clement number
and the superscript T represents the vestor transpose.
We can now define the autocorrelation matrix of a sampled sequence
(7')3:1:[0] ‘.bz:x[_]»] éa:x["’n]

L ¢1:1:[n] ¢m:{n - 1}

$z={0]

Now let us assutie that we are designing a digital finite inpulse response (FIR)
filter. Given the input data vector Xy, we decide we want the filter-output to.be the
sequence d{k], called the desired response. Then we can define-a ngw vector P, the

cross correlation between the desired response and the input vecwor (10:20)

d[k) X

AKX
P = E{dl\Xi} = [y“

] d{k]Xk—!_N_l) |

It is now possible to apply the Wiener-Hopf equation to cbtain the optimum

weight, vector (caiied the Wiener weight vector) (10:22)
W =R"'P (2.26)

The output of an FIR dJigital filter y; is just the convolution of the input with the

filter weights. This can be expressed in sampled sequence notation (5:21}

N~—1
ylk] = > wnjxlk — n] (2.27)
n=0

or equivalently in matrix notation (10:17)

Y = .\VZ‘XL.

——~

2.28)

Unfortunately. neither R nor P will in general be known. In an actual comn-

munication system, .c[&} will be given by

a[k] = d[k] + ik} + n[k]

——
®)
[V
O

~—

where -

dlk] = -the signal of interest
i[k] = some interfering signal

n{k] = nois~
Substituting into Eq 2.22

N1
buzln] = -}% > {dlk) + i[k) + n[k]}{d[k = n) + i[k — 2] + n[k — n]} (2.30)

7 k=0

In the case of d[k], a special sequeice r» ¥ be transmitted and anticipated by the
receiver,.and thereby be known a j..ori at the receiver (7:102), but z[k] and n[k] in
any practical system are not known. Therefore it is not possible to directly calculate

W~.

2.8.2 The Least Mean Squared (LMS) Algorithm. If the input to the filter is
stationary, and W is allowed to vary according to some rule which tends to mini-
mize the difference belween the actual filter response and the desired response, then
W becomes an arbitrarily close approximation of W= (11). The equation for the

difference between d[k] and the filter response y[k] is simply
elk] = dik] = ylk] (2.31)
iWole that the power in ¢[£] is the Mean Squared Error (MSE) and is given by

£ = B{[k]} (2.32)

It can be shown (10:19,20) that £ is a quadratic function of the filter tap
weights, the desired res >onse, and the filter input. £ is referred to as the performance

surface, and for a two tap filter, it is a parabloid (a h, perparabloid if there are more

Figure 2.1. A quadratic mean squared error surface. The verticle axis is £ and the
horizontal axes are the filter weights

than 2 weights) and rescmbles a bowl (see Figure 2.1). The bottom of the bowl is
the minimum MSE and when the bowl is projected onto the weight-vector plane,

the minimum describes the point in weight space described by W~ (10:21).

Given that d[k] is known, it is possible to search the error surface for its mini-
mum, thereby arriving at the optimum weight vector W*. The most straightforward
method of searching the error surface is the LMS algorithm (7:101). Other algorithms

exist and are presented in (10:Chap §).

A complete derivation of the LMS algorithm is given in Adapiivc Signal Pro-

cessing by Widrow and Stearns (10:99-101); only the result is given here:

Wiy = Wi+ 21X, (233)

where
i = the adaptation coefficient

In words, the weight vector for the next input vector is the sum of the current weight

vector and a scaled product of the error and the current input vector.

Egs 2.27, 2.31, and 2.33 define an adaptive filter incorporating the LMS algo-
rithm. The two important assumptions here are first, that an acceptable estimate of
the desired signal dj is available, and second that X is a stationary process. Should
X fail to be a stationary process, then the bottom-of the bowl defined by the the
surface £ will exist at different points in weight space. The statistics of X; must
be non-varying or vary slowly, so that W will in general approach a near optimum

solution (11).

Extending the bowl analogy, searching ¢ for its minimum is equivalent to rolling
a marble down the side of the bowl. The steepness of the sides of the bowl is
determined by the power in d[k] relative to the power in n[k] and #[k] (11). The
more power in d[k], the steeper the sides of the bowl; hence, the more rapid the

convergence.

With adaptive filters, given an error surface €, there is a trade-off between rapid
convergence and close approximation of W*. The trade-off involves selection of an
appropriate adaptation coefficient, y. The smaller g, the more closely W approaches
W= (assuming stationarity of the input). For faster adaplation, p is chosen to be
larger, but the MSE also increases. A good rule of thumb is to select i such that

(10:103,111- 114)
_ M
= (N + 1)(Power in Xy)

(2.34)

where M is the misadjustment of the filt.r. The misadjustment is a measure of the
average distance between W and W~ that the filter designer is willing to live with.

Smaller M results in close approximation of W=, but slower adaptation. Iq 2.34

also assures convergence of the filter for 0-< M < 1. Unlike nonadaptive FIRs, the

adaptive transversal filter can fail to converge (10:102).

2.3.3 Time Dependent Adaptive Filtering. Digitally modulated signals are
not stationary, but rather cyclostationary (4:1). As a result, there does ot exist a
single value of W* associated with an single error surface €. Instead, there exist (for
a sampled signal) a finite number of error surfaces (1:679, 680). A TDAF simply
provides a separate TIAT for each error surface €, in weight space. This can result in
a significant reduction in the MSE of the filter output (7:3). Tach TIAF in the TDAF
has an independently adapted weight vector, Wy ,. The TDAF LMS algorithm is
(1:681)
i = XTW; (2.35)

and

Wik + 2pe Xy ¢ due to

Wik = (2.36)

W; . otherwise
For error surface §,, the weight vector Wy, is convolved with the input and
is subsequently updated according to the LMS algorithm. The other weight vectors
W1z, are dormant. Hence, the overall time to adaptation for the TDAF is slower
than for the TIAT since each weight vector is updated only periodically, rather than
at each sample time k as in the case of the TIAF. The specific implementation of

the TDAT will be covered in detail in Chapter III.

2.4 Chapter Summary

This chapter provided an overview of the concepts of cyclostationarity and
adaptive filtering. A mathematical means by which to determine if a signal is cy-
clostationary was provided, and an example of the calculation was presented. Time
Independent Adaptive Filtering was éovered to form a foundation for the introduc-

tion of the concept of Time Dependent Adaptive Filtering.

III. Simulation Implementation and Verification

3.1 Introduction

This chapter provides a detailed description of the methodology employed-to
characterize the periormance of the Time Dependent Adaptive Filter designed in
support of this research effort. Included is a description of the computer program

that was designed and written to facilitate the characterization.

3.2 Top Level Description of the Simulation

The simulation is a computer program that was written in the C programming
language, and compliled on the public-domain GNU C compiler. Pains were taken
to adhere to the ANSI standard that was recently established for the C language.
As a result, the code should compile and run on any system that has an ANSI C
compiler and sufficient memory resources, including an IBM AT class compatible
computer. In fact, much of the code was developed on a PC compatible computer
with an 80386 microprocessor and 80387 floating p:oiit coprocessor using Borland

L4+ in ANSI mode.

The program simulates a simple communication system. Included in the system
are a data source, bandlimiting filters, a modulator, a noisy channel, adaptive filters
and a demodulator (See Figure 3.1). The SOI channel and SNOI channel shown in
Figure 3.1 are identical. The data rate for the SNOI channel can be set to some

percentage of the SOI data rate.

In the simulation, the symbol rate of the signa: of interest (SOI) channel is
1 symbol/second. All other times, rates, and frequencies are based on that value.
While an actual practical communrication system is unlikely to use such a data rate,

it is a simple matter to scale that rate to the appropriate level. This normalization to

i
3
Pulse Shaping !
Data - Mod- !
Generator p| Format p{ LPF > ultor —— |
i
i
] Interference Channel !
|
Pulse Shaping ! SNOI AWGN
Data ».| Format » LPF n Moad- g s01
Generator p-t Fomms > ulator -
i +
15
1 Signal Channel i ()
2)1
Data - error
File N “) <
training
Data
Tile < LPF i« Demod o TDAF i«
signal + interference + noise
Data P - error
File ¢
training
—
Y
Data .
File < LPF 4 Demod 1« TIAF ¢

Figure 3.1. Signal flow through the simulation

the SOI data rate simplifies the design of the simulation and analysis of the résulting

data.

There is a fundamental “unit of simulation time” referred to as an epoch. An
epoch always is comprised of an integer number of symbols. The duration of the
simulation is determined by specifying the number of syinbols per epoch and the

number of epochs in the simulation.

Every reasonable attempt has been made to modularize the software to fa-
cilitate modification of the simulation. Each component of the simulation (filters,
modulators, etc.) accepts a single value for the imput and provides back to the pro-
gram a single value-as output. Hence, it is straightforward to substitute a different

filter or modulator for the one provided.

3.2.1 BER Version and LC Version There are two distinct versions of the
simulation which differ in the data that they produce, but not in the filtering of the
composite channel signal. The first version allows the filters to adapt for a specified
number of epochs, and then freezes the weights and continues to run, keeping track
of the number of bit errors for the TDAF channel and for the TIAF channel. This

is referred to as the BER (Bit Error Rate) Version.

The second version allows the filters to adapt continuously while storing the
resulting squared error. After a full epoch, the filter weights are reinitialized and
again allowed to adapt. The resulting MSE . averaged with that of the previous
epoch. The process is repeated a specified number of epochs (selectable at run time)
providing an estimate of the expected value of the MSE as a function of adaptation

time. This is called the LC (Learning Curve) Version.

3.2.2 Inpui, Output, Notation, and Definitions. Depending on the version
being run, the simulation requires 24 input parameters at run time. The required

parameters can be . ed in al the terminal, but ease of use is significantly enhanced

if the parameters-are typed into a text file, and provided to the simulation using the-
UNIX or DOS redirection operator. The parameters required for the BER. version
are listed in pppendix A along with a list of the data files produced. The same-

information folr the LC version is listed-in Appendix-B.

The MSE returned by the BER version of the program is different from the
MSE returned by the LC version. The BER version of the program freezes the filter
weights, and then starts to collect squared error data. That data is then averaged
and returned by the program as the MSE. The LC version allows the filter weights
to continuously adapt, and averages squared error sample by sample for all epochs
yielding a vector of MSE 1s a function of sample number. The MSE error for the
last P symbols of the learning curve is averaged, and that number is returned by
the program as the MSE. As a result, for equal inputs and initialization, the MSE
returned by the LC version of the program will always be smaller than that returned

by the BER versicn.

All points in the signal path of the simulation are necessarily discrete samples.
In an actual sifstem, many of these signal would be continuous time. In this chapter,
continuous time signals are represented as functions of time: x(t), d(1), etc. Discrete
time signals are represented as functions of sample number: x[k] or xy, d[k] or d,

etc. Here is a list of most of the signals used in the simulation:

e bsoi(t), bsnoi(t): baseband data signal (1 or 0).
o msoi(t), msnoi(l): formatted baseband data signal (bi-polar or bi-phase).
o MG (1), Msno (¢): bandlimited baseband data signal.

e dsoi(t), dsyor(t): modulated signal.

n(t): Additive white gaussian noise.

o x(t): sum of dgo(t), dswor(t) and n(t).

3-4

o yrpar(t), yr1ar(t): adaptively filtered bandpass signal.

Yrpar(t), ¥r1ap(t): demodulated signal.

mrpar(t), Mriar(t): recovered signal.

erpar(t), er1ar(t): difference signal, d(t) — y(t)

3.8 Simulation Delails

The simulation has two time bases: one for the SOI and another for the SNOIL.
The simulation operates by calculating the signal value at each point in the signal

path and then incrementing time by 1/(sample-frequency). The signal value is then

" recalculated. This process is repeated until the required number of data symbols

have been processed.

3.3.1 Data Generator. The data generator (DG) used in-thissimulation pro-
duces a pseudorandom sequence-of 1's and 0’s sampled at the appropriate frequency.
Incorporated in the DG is a routine taken directly from Numerical Recipes in C
(6:226, 228) called irbit2 which actually calculates the value of each data.bit. When-
ever a full bit time has elapsed, the DG calls irbit2, requesting a new bit value, either
1 or 0, for the random sequence. The DG continues to output that value for the

next full bit time.

The routine irhit2 1equires a primitive polynomial modulo 2, referred to here

as the seed, to form the random bits. The polynomial used was
a'® 4 a® 42?4 ot 420 (3.1)
In G, the above polynomial is represented as the bit sequence

{1000000000000100111} (3.2)

and generates a random sequence with a period of repetition of 2!% —1 = 262143 bits.
The longest simulation run was 512 epochs x 16 symbols per epoch =:8192:symbols.

Hence, as far as the simulation was concerned, the data sequence was purely random.

A call to the DG routine requires six input parameters:

e time: The current value of the base clock for the signal path under considera-

tion (either SOI or SNOI).

¢ datarate: This is constrained to be 1 for the SOI. For the SNOI, it is calcu-
lated by the simulation as 1/SNOI symbol frequency where the SNOI symbol

frequency is an input parameter to the program.

e lastdata: The value of the last sample returned by DG. This variable is modified

by the routine.
o lasttime: The time when the current bit started.

o iseed: The current value of the seed required by irbit2. This variable is modified

by the routine.

e oulputflag: A flag which forces the DG to return a square wave rather than

random data when it is set.

3.3.2 Finile Impulse Response Low Pass Filters. FIR filters are used for the
required low pass filters (LPF) because the filter cocfficients can be quickly and
easily calculated so that it is possible to select the cutoff frequency of the filter
at run time. The FIR filter coefficients are calculated using the windowed Fourier

Transform method with the Hamming window(5:444-452):

sinfwe(k — N/2)]
7k — N/2)
0.54 — 0.46 cos(27k/N), 0 < kSN

wE = (3.4)
0, otherwise

hk

(3.3)

3-6

where

w, = the discrete cutoff frequency (0 < w, < 7)

N = the number of taps in the FIR filter
The output of the filtering routine is the convolution of the filter coefficents given

by Eq (3.3) and the past IV input values:

N-1

m'[k] = > h[njm[k - n]

n=0

(3:3)

The filters are used for two purposes at two different points. Iirst, to band
limit the baseband message signal (either SOI or SNOI) at the input to the channel,
and second, to reject the double frequency component of the demodulated signal at

the output of the mixer in the demodulator (see Section 3.3.4).
A call to the LPT routine requires five input parameters:
e input: The value of the signal to be filtered.
o numdelays: One less than the number of filter coeflicients.
o weights: A vector containing the values of the filter coefficients.
o conlents: A vector containing the past numdelays samples of the input.

o gain: The output of the filter is simply inultiplied by this number.

3.3.3 Dala Formatter The data formatter (DI?) simply converts the binary
digits of the data generator into a bi-polar signal. When its input is a 1, the formatter
does nothing. When its input is a 0, the formatter returns -1. The. formatter is also
capable of formatting the output into a Manchester code. However, no data was

taken with the formatter running in this mode.

3.8./ Modulator and Demodulaior BPSK modulators have several advan-
tages that lend themselves to use in a simulation such as this. First, they are simple
to code. Second, they are in common use. Finally, the demodulated signal, once low
pass filtered, is restored to the shape of the baseband signal. As a result, a BPSK

modulator was chosen for this simulation.

The equation that describes the modulation process is (9:130)

s(t) = Am/(t) cos(2 f.t) (3.6)
where
A = carrier amplitude
fe = carrier frequency
m'(t) = the formatted message

Note that if m/(¢) = %1, the power in the modulated signal is (9:16)

P=

wo| %

A call to the modulator routine requires four input parameters:

o input: The value of the baseband signal.
o carrierfreq: The carrier frequency, f..
o carrierampl: The carrier amplitude, A.

o time: The current value of the base clock for the signal path under considera-

tion.

3-8

The demodulator simply restores the bandpass signal to baseband. The equa-

tion that describes its operation is

m(t) = y(t) cos(27 fol + ¢) (3.8)

The output of the demodulator is fed to a low pass filter to reject the double frequency

component that results from Iq 3.8.

A call to the demodulator routine requires four input parameters:

input: The value of the bandpass signal.

carrierfreq: The carrier frequency, f..

phase: A correction factor provided in the event that there is a significant

phase shift through the channel.

e time: The current value of the base clock for the signal path under considera-

tion.

3.3.5 Noisc Generator The signal n(t) is provided by a routine called gasdev
taken from Numerical Recipes in C (6:210. 211, 217). The routine gasdev returns
normally (Gaussian) distributed random samples with zero mean and unit variance.
The simulation multiplies the returned sample by a gain factor i order achieve noise
power other than 0 dBW. As an example, assume the desired level of noise power is

-15 dBW. Converting to absolute power levels
—15 dBW =107"%/1° = 0.03162 walts (3.9)

A normally distributed random process X with mcan g and variance ¢? can be
converted into a normal random process Z with zero mean and unit variance by

applying

(3.10)

Therefore, Z can be converted into X by applying
X=0Z+p (3.11)

Since o2 is the ac power in the process (we want to maintain zero mean, hence zero
de), multiplying Z by the square root of the desired power yields the appropriate

random process. So in the example,

gt = 0.03162

o = 0.17783

L dnd 3

Providing the simulation with a noise gain of 0.177%3 at run time results in -15 dBW

of noise power being added to the SOI and SNOIL.

The only input parameter gasdev requires from the simulation is a seed for
the random number generator. Any negalive integer on the interval [-65536, -1] is

acceptable.

3.3.6 Time Independent Adaptive Filter (TIAF) The TIAT is adapted from
Chapter 6 of Widrow and Stearns Adaptive Signal Processing (10). The transver-
sal adaptive linear combiner (ALC) has the advantage that it is easy to code and
the single input, single output characleristic of the filter is perfectly suited to this
simulation. A block diagram of a transversal adaptive linear combiner is shown in
Figurc 3.2. Note the presence of a bias weight in Figure 3.2. This aliows for more
rapid convergence of the filter when some dc or very low frequency component is

present in the signal being filtered (1:679).

The TIAF routine operates on two vectors which are passed in to the routine
each time it is called. The first is the vector W, containing the filter coefficients.
The second is the input vector X, that contains the past N inputs to the filter,

where N is the number of filter coeflicients.

3-10

\4
>
>
I

\ 4
>

input

L (5 o

-

bias

4
™
A

1
|

- > Ou tput
desited ?@

> CITOr

Figure 3.2. An Adaptive Linear-Coinbiner

The TIAF is initialized by calling a routine that sets W;, = X, = 0. In the
BER version of the simulation, the TIAF is initialized only once. In the LC version,
wne TIAF is re-initialized after evc.y P symbols, where -P is the number of symbols

in one epoch.

A call to the TTAF routi e requires eight input-parameters:

o npul: The signal being filtered.

o desired: The training signal.

o mu: The adaptation coefficient.
o numtaps: The number of filter coefficients.

o crror: The value of d. — yi. Recall that dj. is the desired signal and y; is the

value returned by the routine. This variable is rnodified by the routine.

o weights: The vector W, representing the filter weights. This vector is modified

by the routine.

3-11

o contents: The vector X, representing the past inputs-to thé filter. This vector

is modified by the routine.

o bias: The value of the bias filter weight. This variable is modified by -the

routine.

When the TIAT routine is called, the process illustrated in Figure 3.3 is per-

formed.

3.8.7 Time Dependent Adaptive Filter (TDAF) The signal m'(t) defined in-
Section 3.2.2 meets the criteria for a(t) defined by Eqs 2.11, 2.12 and 2.13 inSec-
tion 2.2. Therefore the output of the modulator ofSection-3.3.4, y(¢), is a cyclosta-

tionary signal with cycle frequencies £2f,.

The TDAF is made up of a number of TIAFs with a common input. The
output from the TDAF is commutated from the output of the TIAFs as shown in
Figure 3.4. The number of TIAFs used is equal to thé number of samples taken per
symbol of the SOI. Hence, a priori knowledge of the sampling rate and symbol rate of
the SOI is required to implement this filter. Note that the memory requirements for
the TDAF are larger than that for the TIAF, because of the multiple weight vectors
required. The processing time is approximately the same for both filters however,

since each call to cither routine involves only a single convolution.

To show how a TDAT stationarizes a cyclostationary signal, consider the time
domain signal consisting of a periodic pulse train with period Tp and sampling fre-

quency 1/T; (see Figure 3.5):

x(t) = Ii 6(t — nTp) (3.12)

n=-L

Let

1), 7=~k k=0,%1,42,---
y(l, 7y =a(l)z(t+7)= =() 0 (3.13)
0, otherwise

{Initialize variable that will hold output value...
sum = 0.0;

{An N element vector ranges from xg to X(N-1)--
{Shift the input vector xj, to the right and multiply input by
filter weights while summing the product...

for count = (N -1) to 1 do
begin
Xcount = Xcount-1:
sum = sum -+ X count * W count;

end;
{now take care of the current input

Xo = input;
sum = sum + Xo * wq;

{now take care of the bias input
sum = sum + 1 * wpjae:
{The current value of sum will be returned to the program as the
output...
{but the error must still be calculated
error = desired - sum;
{Apply the LMS algorithm to the filter weights...
for count = 0 to ¥ — 1 do

begin

Weount, = Weount + 2 # L * €ITOT * Teount;

end;
return sum;

Figure 3.3. Pseudocode for the TIAF algorithm

3-13

input

inine
training v

ALEC
! v,

ALC
¥,

ALC

output

Crror
il

Figure 3.4. A TDATF implemented as a parallel bank of TIAFs

3-14

¢— To —

T T ® ®
| |

—L—o—o—o—o—i—o-ro—c

—)

L

) -0-0-0————

—Ts

Figure 3.5. The impulse train described by Eq 3:12 sampled every T}

From Eq 2.6 we have

R;(T) = (y(i._ T)é—ﬁ:m) (3.14)
1 i
— H —_ . -j2=al f 315
= Jim = J L r)e (3.15)
1 X .]
= lm — T 27al) — jsin(27ai)] 3.
T(])x_r.;;_; A /To y(t, 7)[cos(27al) — jsin(2mal)]dt (3.16)

= T‘l;l—l-xl il’(;/fo y(t,7) cos(2ral) dt — :%(;‘/To y(t.7)sin(2xat) di (3.17)

Recall (Suction 2.2) that a signal is cyclostationary if R2(7) # 0 for some-o # 0.

Substituting Eq 3.12 into Eq 3.17 and picking « = 1/T,, =fter interchanging the

3-15

-order of summation and integration, we have

1 =, 1
RY(KTy) = 7 né\; /T 6(t = nTo) cos(2m 7-t) di~
]' L-1 . 1
T n:Z—L /To 6(t —nTo) sin(2% —QTOt,) dt (3.18)
1 -1 1 1
= — Y (cos(2r=nTy) — j sin(2r =nTp) (3.19)
0 n={_4-L To T
= IL/Ty (3.20)

which is clearly not equal tc zero. Therefore Eq 3.12 defines a cyclostationary signal.

Now consider that () is applied to the filter of Figure 3.4. In the first TIAT
of the bar! the pulse occurs at the first delay element; in the second TIAF, the
pulse occurs at the second delay element, fxnd so on. After a full period of the signal,
the next pulse in the train will be applied to the filter, where it will occur at the first
delay element of the first TIAF. See Figure 3.3.7. Thus, at the time that any given
TIAF in the TDAF is updated, the pulse will always be in the same bin. Therefore,
from the perspective of the Nth TIAT, the signal can be written as the nonperiodic

function

arrar(l) = 6(t = N) (3.21)

The autocorrelation of xrrar(t) exists only for 7 = 0. Therefore, except for the
degenerate case of 7 = 0 the cyclic autocorrelation is zero. Hence, the TIAT sees a
(=] o b

purely stationary signal.

A call to the TDAT routine requires nine input parameters:

o inpul: The signal being filtered.
o desired: The training signal.

o mu: The adaptation coefficient.

3-16

1000} o0 TIAF 0 at t = 1

ol1]olo]o TIAF 1 at t =ty + T}

el ot 1030 TIAF 2att=1t 42T,

ol oo 1] o TIAF 3 at t = 1y + 3T,

ol alo]| o] 1 TIAF 4 at t = t, + 4T}

Lyop oy ogo TIAF Oat t =ty + 5T =ty + 1p
of1]ofolfo TIAF lat t =ty + T, + Tp

Figure 3.6. Stationarization of a periodic pulse train by a TDAF

3-17

sampersym: The number of samples per symbol of m'(t) (also the number of

TIAFs in the TDAF).

numtaps: The number of filter coefficients in each TIAF.

tdafwts: The two dimensional array W, ;. representing the filter weights. This

array is modified by the routine.

contents: The vector X, representing the past inputs to the filter. This vector

is modified by the routine.

error: The array containing the values of dj —y,. Each TIAT has an associated
error, hence, the error must be stored in an array. This array is modified by

the routine.

bias: The array containing the values of the bias filter weights. Each TIAF

has an associated bias weight. This variable is modified by the routine.

Whenever the TDAF routine is called, the process illustrated in Figure 3.7 is

performed. Note the similarity to Figure 3.3.

3.4 Code Verification

When properly coded, the adaptive filters in this simulation converge to a zero

mean squarcd solution if there is no interference or noise in the input signal (i.e.

when x(¢) = d(t)) (11). Figure 3.8 shows the converged response of the filters under

those circumstances.

The small amount of ripple visible in the response of the TDAT is due to its

slow convergence. This was verified by decreasing the adaptation time and noting

increased ripple. Each input of the TIAF gives rise to an adjustment of the filter

weights. For the TDATF, however, the individual TIAFs comprising the filters are

adjusted only once per symbol. Therefore, the TDAF converges much more slowly.

3-18

{Initialize variable tl;at will hold output value...
sum = 0.0;

{If this is the n'* call to the routine, then the TIAF that is active is...
tiafnum = (n mod sampersym) + 1;

{Increment n for the next call to the routine

n=n-+41;

{Shift the input vector xj to the right and multiply input by
filter weights while summing the product...

for count = (N - 1) to 1 do
begin
Xcount = Xcount-13
sum = Sum + X count ¥ W count, tiafnum’
end;

{now take care of the current input

Xg = input;
sum = sum + Xo * Wy {iafnums

{now take care of the bias input
— * . . -
sum = sum + 1 ¥ Wias tiafnums

{The current value of sum will be returned to the program as the
output, but the error must still be calculated...

CITOT iafpum = desired - sum;
{...and the filter weights must be updated...

for count = 0to N -~ 1 do
begin
Weount, tiafnum = Weount, tiafnum T 2 * [% €ITOT tiafym * Tcount;
end;
return sum;

Figure 3.7. Pseudocode for the TDAF algorithm

3-19

i T
Tyoilly/dardvolt,dat? mmm
.
-
2
3 " s i 1
] w00 wo 496 "o 1060 e
Saople Mater
3 T
Tvetfly/tIalvolt, dst” w——
.
- .
s
-3 x M s
. we [t wee (123 1048 12
Sanple tuater
]
Tverify/tdafvelt.dn’ —
ee
¥.é
LA
L]
.
H o
2
0.2
0.4
M X1
ot
" " : "
- H1J ws 408 (] teev 1
Sanple nater

Figure 3.8. Convergence of the adaptive filters with no interference or noise: a) the
desired signal; b) the TIATF response; c) the TDAF response.

3.5 Chapter Summary

This chapter provided a detailed description of the simulation developed to
compare the performance of a Time Dependent Adaptive Filter with that of a Time
Independent Adaptive Filter. In the simulation, both the TDAF and TIAF simul-
taneously filter the channel signal. The simulation calculates the resultant Mean
Squared Error for both filters. another version of the simulation also counts the

number of bit errors at the receiver end.

IV. Results

4.1 Introduction

In this chapter, the results obtained from a number of simulation runs are

presented. Each simulation run varied one or more of the following parameters:
e Signal to Noise Ratio (SNR) at the filter input
e Signal to Interference Ratio (SIR) at the filter input
e Baud rate of interferer
¢ Carrier frequency of the interferer
The improvement factor for the TDAF is defined as (7:51)

_ M SET IAF

- 4.1
MSErpar (4.1)

The improvement factor will be used as the primary figure of merit for the TDAT".
A comparison of Bit Error Rate (BER) is also made, but it is emphasized that
the results presented are only very rough estimates of the actual BER because only
relatively short (8192 symbols) simulations were run. Longer simulation runs were
possible, but with a sample frequency of 64 samples per symbol, the run time involved
would have reduced the number of runs that could be made. Furthermore, computer
disk space was extremely scarce, and the fact that longe: runs result in longer data

files contributed to the decision to limit the length of each simulation run.

4.2 Simulation in a Noisy Environment

The first runs of the simulations were made with with the carrier amplitude
of the interfering signal set to zero. The amplitude of the SOI carrier and the noise
gain are shown in Table 4.1. The remaining input parameters were not changed from

one simulation to the next. Their values are shown in Tables 4.2 and 4.3.

4-1

SNR | Carrier Amplitude | Noise Gain
-20 dB 10.140720 0.995037
-15 dB 0.247602 0.984554
-10 dB 0.426401 | 0.953463

-5 dB 0.693186 1 0.871635
0 dB 1.000000 0.707107
5 dB 1.232678 0.490156

10 dB 1.348400 0.301511

15 dB 1.392370 0.175081

20dB | 1.407195 0.095037

Table 4.1. SOI carrier amplitude and noise gain for noisy environment simulations

Input Value | Parameter B
6509731 | random bit generator seed
-1018 | AWGN seed)
64 | number of samples/symbol
1 | Manchester or Bipolar format (1=Bi, 0=Man)
1 | Pulse shaping (1=y, 0=n)
64 | Num taps in FIRs
32 | Num taps in TIAF
32 | Num taps in each bank of TDAF
1.0 | SOI pulse shaping LPT cutoff freq
1.0 | SOI pulse shaping LPF gain
See Table 4.1 | SOI carrier amplitude
6.0 | SOI carrier frequency
.95 | SNOI baud rate
0.0 | SNOI carrier amplitude
6.0 | SNOI carrier frequency
1.0 | output LPF gain
1.0 | output LPF cutoff frequency
0.0 | demodulator phase shift
See Tuble 4.1 | Noise gain
0.05 | misadjustment
1 | outputflag (1=random data, 0=square wave)
16 { Num symbols in one epoch
512 | Num of epochs (does not include adaptation)
32 | Number of adaptation epochs

Table 4.2. Input parameters for noisy environment simulations for the BER. version

Input Value

Parameter

-

6509731 | random bit generator seed
-1018 | AWGN seed
64 | number of samples/symbol
1 | Manchester or Bipolar format (1=Bi, 0=Man)
1 | Pulse shaping (1=y, 0=n)
64 | Num taps in FIRs
32 | Num taps in TIAF
32 | Num taps in each bank of TDAF
1.0 | SOI pulse shaping LPF cutoff freq
1.0 | SOI pulse shaping LPF gain
See Table 4.1 | SOI carrier amplitude
6.0 | SOI carrier frequency
.95 | SNOI baud rate
0.0 | SNOI carrier amplitude
6.0 | SNOI carrier frequency
1.0 | output LPF gain
1.0 | output LPF cutoff frequency
0.0 | demodulator phase shift
Sec Table 4.1 | Noise gain
0.05 | misadjustment)
1 | outputflag (1=random data, O=squarc wave)
100 | Num of epochs
16 | Number of symbols to average
512 | Number of symbols per epoch

4-3

Table 1.3. Inpul parameters for noisy environment simulations for the LC version

2-4 - 1 L I j‘ 75 T L 1 ~ LB -
: ‘trprovement.dat’ ~o—
2.2 p .
2 -
1.8
2
£
ES 1.6 |
%
E
-
1.4 -
1.2+ E
1
1 B
0 a 1 I S 1 ; 1 L 1 1
=25 =20 ~15 =10 =5 [10 15 20 25
Signal to Nolce Ratio (SHR) in dB

Figure 4.1. Improvement factor as a function of SNR

4.2.1 Improvement Factor. TFigure 4.1 shows the improvement possible for
varying SNR. The data used was generated by the BER version of the program be-
cuasc that version freezes the filter weights after a specified adaptation time. The
data for Figure 4.1 was taken from Table 4.4. Reed shows in his PhD dissertation
(7:77) that the TDAT (when fully adapted - what he calls an optimal time de-
pendent adaptive filter) will always do at least as well as the TIAF (also when fully
adapted). Why, then, is the MSE smaller for the TIAF than for the TDATF at 20
dB in Table 4.47 The key is that the TDAF could have adapted further il the sim-
ulation had not frozen its filter weights. When the same simulation was re-run and
the adaptation time was doubled (from 512 adaptation symbols to 1024 adapation
symbols), the MSE for the TDAF fell to 0.002970, and the improvement factor rosc
to 2.11212. Therefore, the shape of the curve in Figure 4.1 is dependent on the

amount time the filter is allowed to adapt.

4-4

MSE
SNR | TDAT | TIAF | J

-20 dB | 0.535764 | 0.550010 | 1.02659
715 dB | 0.427564 | 0.484972 | 1.13427
710 dB | 0.272262 | 0.363822 | 1.33620°
5 dB | 0.141466 | 0.227957 | 1.61139
0dB | 0.064374 | 0.125292 | 1.94631
5dB | 0.027251 | 0.060045 | 2.20341
10 dB | 0.012286 | 0.026911 | 2.19038
15 dB | 0.007024 | 0.011781 | 1.67725
20 dB | 0.005233 | 0.004533 | 0.86719

Table 4.4. MSE data for simulations in AWGN

The symmetry of Figure 4.1 is not unexpected. When the SNR is high, both
filters achieve a nearly optimum solution, resulting in an improvement factor near
unity. When the SNR is low, neither filter can “lock on” to the SOI; the MSE
for both filters is large, and again, the improvement factor drops to near unity.
When the SNR is in the moderate range, however, the TDAF’s advantage due to
stationarization of the SOI comes into play as illustrated by the larger improvement

factor.

4.2.2 Comparison of Filtered Demodulaled Signals. A comparison of the de-
modulated signals for various levels of SNR. can be seen in Figures 4.2 through 4.6.
Note that the level of the output is rcduced each time the SNR.is decreased. The
reason for that is simple. In order to keep the adaptation time the same for cach
run, the total amount of power input to the two filters is normalized to 0 dBW (sec
Table 4.1). Recalling from Section 2.3.2 that the adaptation coefficient. u, depends
on the input power to the filter, maintaining an input power of 0 dBW to the filter

results in a constant value for p for all runs. Hence, the adaptation time is the same.

4.2.3 Comparison of MSE Learning Curves. If the MSE for an adaptive filter
is plotted as a function of sample number, the result is the “learning curve” for the

filter (10:531). For the TIAF, the data for the learning curve is collected in the

4-5

L] : ' f
"
_ i
[
-~
a,s,s
M.nn
Pl mm. ——a
| haa LRI i
o .
-3 s
il
By &
o B
Y- ,IIA.:,
gee :
\\\\\\
.

o370

-1

600 800 1000 1200
Sample Number

400

200

‘igure 4.2. The desired signal, TDAF response, and TIAT response for 0 dB SNR

Desired Signzl ——

TDAF Response —-—-

TIAF Response ==~

-

0.6

sIToN

-0.8

1000 1200

800

600
Number

_Sample

400

200

Figure 4.3. The desired signal, TDAT response, and TIAF response for -5 dB SNR

4-6

) T T 1] T T T T
() .
[m
I X .
~e H
suw »
g6 & H
JRE : —
| noa H N, .
o2 g NPT Ll
fieo e
< TN ——
.ﬂbm . h ———
- . H ”
e 85F H Il}l‘?flu
,
LA Y S O —_—
| o
|
L
- - “w
P) o
. v

s3T0A

600 " 800 1000 1200
Sample Number

100

200

The desired signal, TDAT response, and TIAF response for -10 dB SNR

W o 0w

gure 4.4.

O

0.2 ¢

1)
*) "
il i
i :
- o :
L] :
“'n [3 ;
288 P
[, VT aw X .f\'\ 1
g & %hh.\vt
Eus i
b
08 .- P lelD
- H 22
m * v an e -
[wleg =
lTll!lerYl
-
] e e A 1 .
TN .
Ll ¥
Lo
“‘\l .
r Yal i
L
R
RN T
At
-F-h\.-
. Rt]
- .
T
P m—
» -)
o 0 4
ﬁ“““lnl RN
I-"l-.‘ill tlﬁi.rhl‘lll\.v‘\l LK
5 . T Lo y
" Il“lli
LA
P bl
il
PPt
Teralut,
| et "
llllVﬂJ
o e
— .
A llul).'l\‘.nl. :
Srieas
- -— ¥ —>
TN
1 2 1 ! = ;
" - - - “ p—y v ~
= Y) 2] s >
0 o e] 3 ; i
1= ° ¢ ' i -
- S
e3104

1000 1200

300

tusber

600
eple

5a

400

200

dBSNR

5

|

AT response, and TIAF response for -1

Fi
H

The desired signal, TD

ure 4.5.

18

F

0-1 ’ - 13 — L] 1]
Desired-Signal —
TDAF Rezponze ==
0.08 ¢ TIAF Rezponze = -~
[/
0,06 |- i "
Iy
LN
0.05 | n] i -
-] 1 [1
X l; /| \ H H " i
002k LI R L AN T R W 2 Y 1
L TR MU S B XY f i Ty Py 4t
e B) » Poajt H L] 1
M K s J.,;‘-" HEWE ‘..‘.,\ , 1 ,—l ¢
- [—’.- Y xl:,,, A‘.:...." ..‘.\.,k ¥ ...x,,t,rl...'l‘:-... :-J., -y T" ------ " i -
S T Voral v i Vb S Vv oy
\ P B | R N O I Y
-0.02 } 13 Ay URVAVIEE 4
g ¥ V!
g !
0.03 p "‘ll by i
.
.o'oe J -
=0.08 -\J \ -
0.1 t 2
[+ 200 500 600 800 1000 1202
Saople Nusber

Figure 4.6. The desired signal, TDAF response, and TIAF response for -20 dB SNR

following manner. The filter is initialized and allowed to adapt; the resulting error
for each sample is squared and stored in an array. Then the filter is reinitialized, and
again allowed to adapt. The resulting error is squared, and added to the previous
error data. After this process is repeated A times, where A is some sufficiently
large number (A = 100 in this thesis), cach eiement is divided by 1. The result is

an estimate of the MSE. The larger M. the better the estimate.

For the TDAF, the process is somewhat more complicated. Recalling from
Section 2.3.3 and 3.3.7 that the individual TIAFs comprising the TDAF are adapted
only once per symbol. it does not make sense to plot the learning curve as a function
of absolute sample number. This is because no filier adaplation has occurred from
onc sample to the next in the TDAF as is does in the TIAF. Instead, the adaptation
for the TDAF is from one symbol to the next. Therefore, for the TDAF. in addition to
averaging the squared error for cach reinitialized run to the next as in the TIAF, the

error for each sample comprising a given symbol is averaged. The resulting learning

1 T T T T T

TDAF Learning Curve —— 1
TIAF Learning Curve —=—-
B
3

g i
D 1
& i
3)i " ! ?
: pomos]
2] -';\I
[{
e "
g :
=

0.01 1 L 1 3 1
0 100 200 300 400 500 600
Sample/64 “ox TDAT; Sample for TIAF

Figure 4.7. MSE learning curves for the TDAF and TIAF for 0 dB SNR.

curve plots the MSE as a function of symbol number, or (sample number)/{samples
per symbol).

Referring to Figures 4.7 through 4.11, note that the SNR is proportional to
the initial slope of the learning curve. This is because strong correlation between
the input signal and the desired signal yields an error surface with steep sides (see

Section 2.3.2). Steep error surface sides result in faster adaptation.

The learning curve plots have been normalized by the average power in the
desired signal. This was done so that comparisons of the rate of learning could be

made without regard to the magnitude of the MSE.

The purpose of the learning curve is to show the adaptation process of the
filters. The learning curve plots are not intended to provide an indication of the

value of the MSE; instead, refer to Table 4.4.

4-9

1) i L - T
TDAF Learning Curve ~—
TIAF Learning Curve ——-

5 ;
3 PR kool
g " oo Wi
: oM R
5 [q g 0% ﬁ! P
£ A T T
RN TG}
VIR L L T
Wi ahandi
i l w] nmlﬂ
(7
0.1 L l' 1 1 1
0 100 200 300 400 500 600
Sample/64 for TDAF; Sample for TIAF

Figure 4.8. MSE learning curves for the TDAF and TIAF for -5 dB SNR

1 1] ¥ I T ¥
TDAF Learning Cuaxve =
TIAF Lezrning Curve —=—-

i
\
{ll paz{
\ 4‘1"2'.‘. i b
Pon }':"\ g l{”d 1 !
" W g ,{‘P,‘,; .!'Sfig L\“ 'y ll‘w\li i
: Ui d b T i R Tl
: t” .*’u‘(= : x I plil' ‘;‘1 =| -ﬁ '! l{:‘.' i
: TSI R T SR
g [] F::l, Ww =| r { g !
v N ! h
iy i ‘ﬁ“dﬂw !
z : 1 gr !
i ! ;
]
t
1 1:10 2;o 31;0 «;o sc;o 600

Sample/64 for TDAF; Sample for TIAF

Figure 4.9. MSE learning curves for the TDAF and TIAF for -10 dB'SNR,

4-10

T T T T

TDAF Learning Curve ——
TIAF Learning Curve —=-

'. 1 i 'i| .

g, At '?ﬁt Y Aol

TARANLRLY . FLW "}“a :
¥ MW\‘ '{ﬁn‘ ! “M ! i
":

-
%= =
o

'y {
1) v “W' WW}
I Il“| A] g " 1
i vy ! Iy y it \
W i.f b h

Moan Squared Error

Iy I{({ ﬁll i \ ;, \"
! i

!
00 300 400 500 600

1
0 100 2
Sample/64 for TDAF; Sample for TIAF

Figure 4.10. MSE learning curves for the TDAF and TIAF for -15 dB SNR

l ¥ 1 L] 1] 1
TDAF Learning Curve ——
TIAF Leaining Curve —=-
§ ' ' i t
ﬁ& }lx Wik \ i g\}} b
‘ irs {nvh P :{‘({ ’\";\ \(?‘ g
Wg" h‘ " 13" 3 '),||,'§ :, ﬁ:‘ 5’ f‘l)’ll‘ \ ;:\ ' l‘; ;
FRE R B 1 " #
. 1 it ;‘ “ H LY i n'l ‘ \ \
: AT T A T
: T A
1 1 !
oW iy
El) W l,! y 1
=] f 13
3 ! { ¥
- \
g !
-
0.1 L 1
[100 200 300 400 500 600
Sample/64 for TDAF; Sample for TIAF

Figure 4.11. MSE learning curves for the TDAF and TIAF for -20 dB SNR.

4-11

SNR | TDAF | TIAF
0 dB 0.0 0.0

5 dB | 0.004029 | 0.008058
710 dB | 0.061653 | 0.070321
715 dB | 0.198877 | 0.183372
-20 dB | 0.535764 | 0.550010

Table 4.5. BER for five simulations in a noisy environment

4.2.4 Bit Error Rate An error detection occurs when the sum of samples
over a symbol time is less than zero when a 1 was transmitted, and greater than zero

when a -1 was transmitted. BER is calculated according to

of Bit Errors

of Symbols in Simulation

BER =

(42)

Since a BPSK modulator was used, the number of symbols equals the number of bits.
In many instances, no errors were detected during the course of the simulation. It is
not possible to overemphasize the point that the BER. for that particular SNR is not
zero. The only conclusion that may be made is that for that particular simulation
run, no bit errors were made. With that in mind, refer to Table 4.5. Note that
the greatest reduction in BER occurs at -5 dB SNR. These results seem Lo compare
favorably with those plotted in Figure 4.1. Each simulation was 8192 symbols in

duration.

4.2.5 Summary The data presented show that the TDAF in general provides

some improvement over the TIAT as long as the SNR. is no worse than about -10 dB.

When the SNR is very high, both fillers achieve a low MSE; hence, the improvement

is not, appreciable.

4.3 Simulation in Interference

In this section the performance of the TDAT is measured under the condition

that an interference signal of the same carrier frequency and similar baud rate is

4-12

SIR| SOI SNOI :
-20 dB | 0.140720 | 1.407195
-15 dB | 0.247602 | 1.392370
-10 dB | 0.426401 | 1.348400
-5 dB | 0.693186 | 1.232678
0 dB | 1.000000 | 1.000000
5 dB | 1.232678 | 0.693186
10 dB | 1.348400 | 0.426401
15 dB | 1.392370 | 0.247602
20 dB | 1.407195 | 0.140720

Table 4.6. SOI and

simulations

SNOI carrier amplitude for interference environment

present in the channel. As in Section 4.2, the total power into the filter is maintained

at 1 watt. See Table 4.6 ‘or the carrier amplitudes used.

Somewhat unrealisticly, the condition that no AWGN is present on the channel
was chosen in an attempt to identify the performance differences of the filters for noise

and interference. The ratio of interference baud rate to SOI baud rate was set at 0.95

W A W

for all simulations in this section. It was thought that such a ratio would adequately

e i

stress the fillers without rendering either TDAF or TIAF useless. Surprisingly, the

adaptive filters are relatively insensitive to the baud rate of the interferer as can be

EOE P I 0,0

R

seen in Figures 4.24 and 4.25. Table 4.7 shows the input parameters used to obtain
the data for the simulations using the BER version of the program. Table 4.8 shows

the input parameters used for the LC version simulations.

4.8.1 Improvement Faclor. The improvement gain for the TDAT was im-
pressive when interference was present. Table 4.9 shows the results obtained from
the BER version of the simulation. The data shown has been plotied in Figure 4.12.

Note the similarity in shape to Figure 4.1 in Section 4.2.1. In Figure 4.12 however,
the magnitude of the improvement is significantly higher than in Figure 4.1. This is

an indication that the major advantage of the TDAFT is in interference rejection.

4-13

Input Value | Parameter
6509731 | random bit generator seed
-1018 | AWGN seed

64 | number of samples/symbol
1 | Manchester or Bipolar format (1=Bi, 0=Man)
1 | Pulse shaping (1=y, 0=n)

64 | Num taps in FIRs

32 | Num taps in TIAF

32 | Num taps in each bank of TDAF

1.0 | SOI pulse shaping LPF cutoff freq

1.0 | SOI pulse shaping LPF gain

See Table 4.6 | SOI carrier amplitude
6.0 | SOI carrier frequency
.95 | SNOI baud rate
See Table 4.6 | SNOI carrier amplitude

6.0 | SNOI carrier frequency

1.0 | output LPF gain

1.0 | output LPF cutoff frequency

0.0 | demodulator phase shift

0.0 | Noise gain

0.05 | misadjustment

1 | outputflag (1=random data, O0=square wave)

16 | Num symbols in one epoch

512 | Num of epochs (does not include adaptation)

32 | Number of adaptation epochs

Table 4.7.

Input parameters for interference environment simulations for the BER.
version

Input Value

Parameter

Table 4.8.

6509731 | random bit generator seed
-1018 | AWGN seed
64 | number of samples/symbol
1 | Manchester or Bipolar format (1=Bi, 0=Man)
1 | Pulse shaping (1=y, 0=n)
64 | Num taps in FIRs
32 | Numn taps in TIAF
32 | Num taps in each bank of TDAT
1.0 | SOI pulse shaping LPT cutoff freq
1.0 | SOI pulse shaping LPF gain
See Table 4.6 | SOI carrier amplitude
6.0 | SOI carrier frequency
.95 | SNOI baud rate 7
See Table 4.6 | SNOI carrier amplitude
6.0 | SNOI carrier frequency
1.0 | output LPF gain
1.0 | output LPT cutoff frequency
0.0 | demodulator phase shift
0.0 | Noise gain
0.05 | misadjustment
1 | outputflag (1=random data, 0=square wave)
100 | Num of epochs
16 | Number of symbols to average
512 | Number of symbols per epoch
Input parameters for interference environment simulations for the LC
version
MSE
SNR TDAT TIAF J
-20 dB | 0.455682 | 0.954006 | 2.0935S
-15 dB | 0.269755 | 0.870597 | 3.22736
-10 dB | 0.096536 | 0.741551 | 7.68160
-5 dB] 0.039515 | 0.570294 | 14.43234
0dB |0.019807 | 0.370759 | 18.71878
5dB | 0.011584 | 0.183849 | 15.87094
10 dB | 0.008921 | 0.072100 | 8.08285
15 dB | 0.009487 | 0.028873 | 3.04343
20 dB | 0.007489 | 0.012307 | 1.64334

Table 4.9. MSIE data for simulations in interference

4-15

20
18
16 |
13 |
2 12 ¢
H 10
g
2]
] gt
6
3
2 e
o 1)] L 1 1 1. L 1 1
=25 =20 -15 =10 -5 0 5 10 15 20 25
Signal to Interfercnce Ratio (SIR) in 4B

Iligure 4.12. Improvement factor as a function of SIR

4.8.2 Comparison of Filtered Demodulated Signals. A comparison of the de-
modulated signals for various levels of SIR can be seen in Figures 4.13 through 4.17.
Note that as the SIR gets smaller, the response of the TIAF loses all similarity to the
desired signal. For the TDAF, on the other hand, the shape of the response is very
nearly correct even at -20 dB SIR, although the level of its output is not. Figure 4.18
is a plot of the SNOI over the same time interval as Figures 4.13 through 4.17. Note
the similarity of the TIAT output in Figures 4.16 and 4.17 to the plot in Figure 4.18

indicating that the TIAF could not track the SOI, and instead passed the SNOI.

4.3.3 Comparison of MSE Learning Curves. The learning curves shown in
Figures 4.19 through 4.23 are computed in the same fashion as those in Section 4.2.3.
Again, the adaptive filters converge more rapidly when the SIR is high. In fact
Figures 4.22 and 4.23 show that there is little reduction in the level of the MSE

throughout the course of the simulation.

£3T0A e

Figure 4.13. The desired signal

&g =
w [
m M
-~ ~
o -u.U |
153 [e st
L] L] 1 11 L] 1] L] m rm L] L] v 14 L] m L] L] ¥ L] m fw
i i : !
_“ % __. m m
33 5 388 ; g
g2 < cec : o
=2 o 23R H ° (o3
wa b3 o0 L. woa . PR de 7]
) e 1< g —— H o 8 8 |
th 2 = PE ST e e e = &
[: .
3% ey 322 I i Pz
g% <q gre . TR <
o L A]
o | B o | B
4o . =4
© ..m . hd o \
: = W
] H . < |
p} ~ : £ ~
i 8 m £l g
o2 2 I : 1g3] =
lWG < H -] o]
= [: I (= ~
g % m.) —
A = Y o) m uu..x
P =
1 < A T Tk < ,
o D D |
B =
=l
=
.20
n
g~
&
‘N
Q
-~
5]
=]
I
-
—
e
3]
et
pl
80
2

L] L] 1] T T
<y .
_ [:
LI :
~o 0 H
B8n e H
gc g H
llmm- == H -
. 43 G . - B
G e i e
e e ..
fo o T - 22
i%% B
wnQM g T rd
| 2e& -
S e .-
ekl PGPS
- LT : r\\\
Al
] m III\
. H -
) H <
. M
H
£

T e C Y
...... : e
lhh“ulul?mln.vlnll\
- : -
< . '
s 2] 1 2
- o~ - o -t o~
. . .
= -] © © © ©
« ¥

EERCIN

600 800 1000 1200
Sample Number

400

200

=

<o

=y

[

-

£

e k) i ¥ 4 L) LI L]

(721 .y =

= _ [3

[. i

o 288 :

& S8R : .

SRR : .

o & » tay
fb s -)
Sy I —
90 e o 22 o v
gr e .

N
i
1
]

i
i
.
.

response, and TIAF r

F

The desired signal, TDA

SIR

“0.15 |

vigon

3.

0.2

600 800 1600 1200
Sarple Number

400

200

1.1

gure ¢

F

dB

5

TDAT response, and TIAF response for -1

gnal,

i

The desired s

SIR

ure 4.16.

o
o

i

F

4-18

T T L] Ll 1 ' ' '
' — w " m
1« :
- oD i
QU H
, B8Is ;
SE8 q ;
1 ~ H
<52 N
m_m..m > >
-
- \\\\.
S — maad ”
Sl L iimmeemem=nt
|||||||||| H =~
. PO H ¢
L] " D
: H)
L] " ¢
L] n I/ \‘L
; :
. rd
K [
1 .
, -
e 9 4
L]
R}
'
L] N‘.W
lll J.
||||||||||||||| \K"“

= fememeeaai.,

—/ m llllllllllllll
IUTTUIRERRE ~=3f '
- - ~\

lllllllllll ey
Bl T
. ~ . iy
-
~ V
!
: '
f\ : v
< PP L L :
e
— - . =
e "_ y
........ - - h\.\n..\.\:u.. |ﬂ|-|.:v
» !'
— S : X
) \ . A 1 2 L . -
o~ Q S 8 3 3
T 8 8 & & ° § 3 8 8 7
> P o ° o ° 9 ? v '
. " . '
o3ITON

€060 800 1000 1200
Sample Humber

400

200

Figure 4.17. The desired signal, TDAT response, and TIAF response for -20 dB

SIR

)

VA{OA

0.1

*0.2

0.3

0.4 F

~0.5

600 800 1600 1200
Sarple lumbor

100

200

Figure 4.18. The SNOI present in Figures 4.13 through 4.17

4-1¢

1] 1]
TDAF Learning Cuxve =

\,(“ TIAF Learning-Curve ==:
I‘l
‘ K ?
'i‘.‘\'.. T "‘l})'u Mt ;
H ll‘ s"’)t‘ l', “"\ :d \"("'lﬂq?‘x l"?i‘ m jim}!!“\ ’?’r"‘
; AR WA NN
s A YRR T T WA T
g 0.1} ‘W\\e‘}t« "}'z' };x;: }‘3},'}' }‘i‘ , ’
= " I
: LT
: M"""‘”‘W}A
! MWWW
0.01 S L ! x .
1] 100 200 300 300 50 600
Sample/64 for TDAF; Sample for TIAF

Figure 4.19. MSE learning curves for the TDAF and TIAF for 0 dB SIR

Moan Squavad Error

l ¥ 12 11 75 T
TDAF Learning Curve ——
1 TIAF Lezraing Curve =—=-
o
1
U
\‘(\"? ¥y }‘1"", ,"} \ e i
[v
| ql\vw ’l lq :' 3 ", hiA J iy u‘f\
= ,m' /\r‘ i H f b P n‘(. HEY oy
\II Y '3‘\',1%\; Py : B 1‘ "l i ! H :
AL S O T R TN
W WAL R 7Y o ki
) L] Yot J(* L [5ol
' RN *:,l I)
b A MY -
)] o§ Ly .
] W i b H Wﬂw'\lﬁ
A T w
0.01 L . 1 I 1
0 100 200 300 460 500 600
Sample/6d for TOAF: Sampie for TIAF

Figure 4.20. MSE fearning curves for the TDAF and TIAF for -5 dB SIR

TDAF Learning.Curve

.
|
1
-4
L
5
-l
-
'S -
= ~T
- B T
m P lhi?ﬂln?ﬂﬂll
o
K bln?l.u\
.
e A
- -
s TTTErmemmeeea o
g S ——
— -
\\ll\
~—
TTEm s
IIIIII
-
-
e

h\hll“"!-.u\.’
Pl
- e i s o
o ——— ﬂl"
e —nETT o
R e
o
X
——e
gt
lllll
-
= -
-
o an ke
lllllllllllllll
o =
Anl.r-lln
llf P
el
i P,
llllll e
4!.5% 3
-4 Ll
. <
o o
<

a01x3 poxenby uedy

300 400 500 600
Sarple/64 for TDAF; Sample for TIAF

200

100

Figure 4.21. MSE learning curves for the TDAF and TIAF for -10 dB SIR

TDAF Learning Curve ——

]
1
]
53 -
R
-3 ——g
g .
;] ~ T N S
e T T .
g %z e SR
§ Foeee
ot
-
iy
L R
& AT i e o o ——
—-— b
= 3 [I
e
F\-“-I
l!lllil.l
T [
!Sll\ll"
-
-
-
llllllllllllllll ~——
- illllh‘lq 'I\llll'll'
-
-l
I,
lllllllllllllll L WY
ﬂJi.H“Llll =T 1
o T
l\lu'l
e P S - - e .
~ae

-
T

X0 porvnbs weoy

200 300 306 500 600
Sample for TIAF

Sample/63 for TDAF:

100

Figure 4.22. MSE learning curves for the TDAF and TIAF for -15 dB SIR

4-21

1 L 1 4 L] 7l = =
TDAF Learning Curve —— {-
l’ TIAF Lezrning Curve ——
Mq&mw?},m\), ——
\ 8 l"’ }’ d ; HH‘U '\‘I"M&I‘ h‘\ A
H .
' i ﬁ.i" 4 ,!.v; . " "Hf
Ve 11 *:"‘ S T U I A
T T T S AL T O N
; I: 1 l' |‘ : i i 1] { 1 “ f 1 : {,
i |72 T A T - T S A A S S
: VAL
= 1 [§
3 b V! f T A !
] 0.1k o R I B P] .
2 3 v 15t I 1 - 1!
% A 1 ‘ H i ! || 1 :
= g 0 v ! 14 i v 1 1} 1y
g ! 11 1! [[1
] ! iy H y !]
S 51 1) i 3 1 I]
H 1] \! i il 1
1 [! 7 XI t ’,
I ¢ K] 1] L
1 'I I p]
TH 1
W \ H
?’ 1
o,ox 1 3 2 X 2
[} 100 200 300 400 500 600
Sample/64 for TDAF: Saeple for TIAF

Figure 4.23. MSE learning curves for the TDAF and TIAF for -20 dB SIR

SIR TDAF TIAF

0dB 0.0 0.220974
-5 dB 0.0 0.396044
-10 dB 0.0 0.449152
-15 dB 0.0 0.467708
-20 dB | 0.152240 | 0.451016

Table 4.10. BER for five Simulations in Interference

4.3.4 Bit Error Rate Table 4.10 shows the BER observed during the simula-
tions in interference. These five simulations indicate that there may be a significant
improvement in BER when a TDAF is used to extract a signal from a strong inter-
ferer . Referring to Table 1.5, note that in noise, both filters suffered approximately

50% error rate. In interference, however, the BER for the TDAF dropped irom
approximately 50% to under 20%.

4.3.5 Summary. The improvement obtained for simulations in an interfer-

ence were better overall than for those run in a noisy environment. The improvement

factor was higher at all levels of SIR, and the Bit Error Rate appeared to be lower.
The simulations show that the TDAF is very good at rejecting interference, even

when the interferer is at the same carrier frequency.

4.4 Varyio : the Baud Rate of the Interferer

The data used to produce Figure 4.24 and 4.25 was compiled from 12 simula-
tions. A simulation was run for each the four relative baud rates at -10 dR, 0 dB and
10 dB SIR. The carrier amplitudes for those levels of SIR can be found in Table 4.6.

All remaining input parameters were the same as those listed in Table 4.7.
Lo

The data in this section support the surprising result that the TDAT is es-
sentially unaffected by the baud rate of the interferer. Figure 4.24 illustrates the
TDAF’s ability to reject an SNOI even when its baud rate, modulation type and
carrier frequency are the same as the SOL. Figure 4.25 is included to show the TIATs
performance under the same conditions. The TIAT was also fairly insensitive to the
baud of the interferer, bul note that the MSE for the TIAT is approximately 10 dB

Worse.

4.5 Varying the Carrier Frequency of the SNOI

The data for Figure 4.26 were compiled from five sinulations. In each simula-
tion, the carrier frequency of the SNOI was varied as indicated. The SIR was fixed

al 0 dB. The remaining input paramelers to the simulation were set according to

Table 4.7.

The TDAF is not affected by SNOI carrier frequency proximity as illustrated
by Figure 4.26. The TIAT however suffers a significant increase in MSE as the carrier

frequencies of the SOI and SNOI coincide.

T 1] i 1 L] 1
=10 dB SIR ——
0.12 0 dB SIR =+=-
10 4B SIR O~
0.1} P /\ i
0.08 - .
w
2
0.06 .
0.04 .
0.02 | e —————————— o e o e e e ———— -+ g
[R R SR G-=a===" b
0 1 1 4 1 1 1
0.88 0.9 0.92 0.94 0.96 0.98 Bl 1.02
Relative Baud

Figure 4.24. MSE as a function relative baud rate at various SIRs for the TDAF

1.6 T T T T T T
=10 dB SIR ——
0 dB SIR —+-
Ll 10 4B SIR 0 - |
1.2 F o
1 E
[
¢ 0.8 F 1
0.6 .
0.4 | .
0.2 ~
4
0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
Relative Baud
Figure 4.25. MSE as a function relative baud rate at various SIRs for the TIATF

0.4 T T T T T
TDAF MSE ~o—
TIAF MSE —p=-+
0.35 | +,]
\
N
N
N\
N
0.3 - N .
N
N
N\,
\\
0.25 \, b
\\
\
%3 AN
@ 0.2 F \\ L
\
\
AN
0.15 } \\ R
\
\
AN
0.1} N b
\\\
\\\
~

0.05 | SSa— - -

W‘/\—:—:

0 I 1 1 1 1

6 6.5 7 1.5 8

SNOI Carxrier Frequency (Hz)

Figure 4.26. MSE as a function SNOI carrier frequency. SOI carrier frequency fixed
at 6 Hz .

4.6 Chapter Summary

Over 50 simulations were run to obtain the data for this chapter. The results
of those simulations indicate that that for a given communications system, if a choice
exists between a TDAF and a TIAT, then the conditions under which the filter will
be operating must be considered prior to making the selection. The simulations
yielded improvement factors that ranged from -0.6 dB to 12 dB. Even though there
was one case where the TIAF outperformed the TDAF, it was shown that given

sufficient adaptation time, the TDAT will always do at least as well as the TIATF.

4-25

V. Conclusions and Recommendations

5.1 Conclusions

This thesis presented a TDAT which could be use‘d to improve the signal
to interference ratio (SIR) and signal to noise ratio (SNR) of digitally modulated
communications signals. The performance improvement of the TDAF over the TIAT
was determined based on the application of various metrics, including Mean Square
Error (MSE) and Bit Error Rate (BER). The collected data indicate that there are
advantages and disadvantages of the TDAT. The advantages can be summarized as

follows:

e The improvement in MSE obtained by using a TDAF over a TIAF in a noisy
environment can be significant. With a 0 dB SNR, a performance gain of

nearly 3 dB can be expected.

e The improvement in MSE obtained by using a TDAF over a TIAF in situation
where there is a strong interference signal can be even more significant. With

a 0 dB SIR, a performance gain of more than 12 dB can be expected.

o A receiver fitted with a TDAF which has been given adequate time to adapt

is likely to have a lower BER than a receiver using a TIAF.

e The TDAT always does al least as well as the TIAT, given adequate time to

adapt.
The disadvantages are:

e The TDAT takes cousidciably longer to adapt than the TIAF. While the TIAF
adapts at each sample time, the TDAF actually only “fractionally” adapts at
each sample time. A full symbol is required to adapt each TIAF in the TDAF

structure.

5.2

The TDAT would require much more “real estate” if implemented in silicon.
This is due to the multiplicity of filter coefficients required for the TDAF.
Fortunately, there is little added computational overhead, since the process of
updating filter coefficients is no more frequent for the TDAF than it is for the
TIAF.

The TDAF is somewhat more complex than the TIAF. This should be clear
since the TDAF is made up of a bank of parallel TIAF.

As SNR at the filter input decreases, the improvement in Mean Square Error
decreases. By the time the SNR has degraded to less than -10 dB, the per-
formance gain has dropped to under 1 dB. If that is the case, then given the

other disadvantages of the TDAF, the use of a TIAF might make more sense.

Recommendations

There are several topics that could (and probably should) have been covered

in the execution of this research. Some of the more urgent are listed below.

1. Investigate the role that the modulation type plays in the performance gain.

By implementing different modulator/demodulator pairs, the simulation can
be used to determine improvement gain as a function of modulation type.

Other modulation schemes might include:

¢ Quadrature Phase Shift Keying (QPSK)

e Offset Quadrature Phase Shift Keying (OQPSK)
¢ M-ary Irequency Shift Keying (FSK)

¢ Minimum Shift Keying (MSK)

o Quadrature Amplitude Modulation (QAM)

o

-1

Implement the TDAF with no external training signal. With some added
complexity, the inconvenience of having to transmit a known preample can be

circumvented (7), and the filter can be allowed to adapt continuously.

Implement the TDAF in the frequency domain. The advantage of doing so can
be significant. The cycle frequencies of the signal used in this simulation were
at £2f.. In the frequency domain, the optimum TDAF is implemented with as
many TIAFs as exist cycle frequencies (7:103). One advantage of fewer TIAFs
may be more rapid adaptation since there would be fewer weight vectors to

update.

. Precalculate an initial weight vector for the adaptive filters. Both TDAF and

TIAF are initialized with zero weight vectors in the simulation presented here.
It should be possible to calculate a “near optimum” solution for the adaptive

filters for a given SOI, and then allow the filter weights adapt from that point.

Investigate the apparent inconsistency that exists between the MSE returned
for the L.C version and the MSE returned for the BER, version. While the BER
consistantly returns smaller Bit Error Rate numbers and MSE for the TDAF,

the MSE returned by the LC version is considerably higher for the TDAF.

Determine the improvement of the TDAF over the TIAF for the important

case of multiple interferers.

. Determine the improvement of the TDAF over the TIAT under the conditions

of simultancous interference and noise.

Appendix A. Input Parameters and Output Files for the BER

Version

The BER version of the simulation prompts the user for the following input

parameters at run time:

o Random bit generator seed. Seeds the random bit generator.

¢ Random number generator sced. Seeds the AWGN generator.

e Data Sample Rale. The number of samples per bit of the data.

e [ormat. A flag to select between bi-polar and bi-phase baseband format.

o Pulsc shaping. A flag to allow or disallow bandlimiting of the baseband data

signal.

e FIR taps The number of coefficients in tiie non-adaptive FIR filters. All FIR

filters in the simulation then have the same number of taps.

o TIAF taps. The number of filter coefficients for the time independent adaptive

filter. Stated another way, the number of elements of W.

s TDAF taps. The number of filter coefficients for the time dependent adaptive

filter. See Section 2.3.3

o Bandlimiting LPF cutoff frequency. Passed to the simulation in hertz. Both

SOI and SNOI channels use the same cutoff.

o Bandlimiting LPF gain. Allows adjustment of the level of the output of the

pulse shapers.
e SOI carrier amplitude.

e SOI carrier frequency.

A-1

SNOI symbol frequency. Expressed as a fraction of the SOI symbol frequency

of 1 symbol per second. May be any positive real number.

SNOI carrier amplilude.

SNOI carrier frequency.

Output LPF gain. Allows adjustment of the demodulator output level.
Output LPF cutoff frequency. In hertz.

Demodulator phasc shift. Allows for adjustment of the phase of the bandpass

signal into the demodulator.

Noise gain. Allows for adjustment of noise power in the unfiltered bandpass

signal.
Misadjustment. See Section 2.3.3

Data type fl. 9. Allows for selection between a square wave baseband signal or

random data.

Symbols per epoch. The program writes this number of symbols to a data file

at the end of a simulation run.

Number of run epochs. Used to specify the number of symbols for the entire

simulation (total symbols = symbols per epoch x number of run epnchs).

Number of adaptation cpochs. Used to specify the length of time the filters are

allowed to adapt.

FEach run of the BER. Version produces six data files. The files are written into

the current directory. They are:

tdafvolt.dal The output of the TDATF over the last specified number of symbols

(see above).

tiafvolt.dat The output of the TIAT over the same period.

dsrdvoli.dat The desired filter output over the same period.
tdafvec.dat The error signal of the TDAF over the same period.
tiafvic.dat The error signal of the TIAF over the same period.

numbers.tex A file that contains various data and figures of merit for the

simulation run:

1. The adaptation coefficient for the simulation (see Section 2.3.3).

[S™]

. The number of adaptation epochs in the simulation.

3. The total number of epochs in the simulation.

4. The number of post-adaptation symbols in the simulation.
5. The mean squared error for the TDAF.

6. The mean squared error for the TIAF.

7. The number of symbol errors for the TDAT.

S. The number of symbol errors for the TIAF.

Appendix B. Input Parameters and Quitput Files for the LC Version

The LC version of the simulation prompts the user for the following input

parameters at run time:

e Random bit generator secd. Seeds the random bit generator.

¢ Random number generator seed. Seeds the AWGN generator.

e Dala Samplc Rate. The number of samples per bit of the data.

o Formal. A flag to sclect between bi-polar and bi-phase baseband format.

e Pulse shaping. A flag to allow or disallow bandlimiting of the baseband data

signal.

e FIR taps The number of coefficients in the non-adaptive FIR filters. All FIR

filters in the simulation then have the same number of taps.

o T/AF taps. The number of filter coefficients for the time independent adaptive

filter. Stated another way, the number of elements of W.

o TDAF taps. The number of filter coefficients for the time dependent adaptive

filter. See Section 2.3.3

o Bandlimiting LPF culoff frequency. Passed to the simulation in hertz. Both

SOI and SNOI channels use the same cutofl.

o Bandlimiting LPF gain. Allows adjustment ol the level of the output of the

pulse shapers.
e SOI carrier amplitude.

o SOI carrier frequency.

B-1

SNOI symbol frequency. Expressed as a fraction of the SOI symbol frequency

of 1 symbol per second. May be any positive real number.

SNOI carrier amplitude.

SNOI carrier frequency.

Oulput LPF gain. Allows adjustment of the demodulator output level.
Output LPF cutoff frequency. In hertz.

Dcmodulator phase shift. Allows for adjustment of the phase of the bandpass

signal into the demodulator.

Noisc gain. Allows for adjustment of noise power in the unfiltered bandpass

signal.
Misadjustment. See Section 2.3.3

Data type flag. Allows for selection between a square wave baseband signal or

random data.

Number of epochs. The greater the number of epochs, the hetter the estimate

of the MSE.

Number of symbols lo average. The MSI from this number of symbols will be

averaged al the end of each epoch to provide an estimate of the MSE.

Number sumbols per epoch. This number of symbols will be applied to the

TDAF and TIAF each epoch.

Each run of version LC produces three data files. The files are written into the

current directory. They are:

o tdaflrn.dat An estimate of the expected value of the MSE as a function of time

for the TDAF.

e {taflrn.dat An estimate of the expected value of the MSE as a function of-time

for the TIAF.

o Inumbers.tex A file that contains various data and figures of merit for the

siinulation run:

1. The adaptation coefficient.

o

The number of symbols represented by the adaptation period.

3. The mean squared crror of the TDAF for the last n symbols of the epoch

(where n is selectable at run time).

4. The mean squared error of the TIAT for the last n symbols of the epoch

(where n is selectable at run time).

B-3

Appendix C. Source Code for the BER Version

[F Rk kR ok ok kR KRR K Aok Aok koK Rk ok R kKR KRRk KK KRR kR Rk Kok Ak ok
/****xx This program is a simulated digital communication system *¥fkxx/
[tk kR kok ok Rk Rok Rk kR ok kR ok ok kR bk Rk KRRk Kk Rk koK ok Rk
/**/
/*

/ 5 0ct 91: This version of the program has an optimizecd TDAF.

/ The filter now has a one dimensional vector (rather than a matrix
/ as in earlier versions) to hold the values of the input. I made

/ the startling (to me) observation that each row of the input

/ matrix was identical.

/ 7 Oct 91: Added input parameter "frozen" to the adaptive

/ filters. When frozen = 0, weights are allowed to adapt.

/ After the filters have been given the specified length of time

/ to adapt, then frozen is set to 1, and filter weights are no

/ longer allowed to adapt.

/ Executable: frzloop

/ */
/

koo Kok ok ok skok koo ook ok ok otk ok sk sk ksl ik ok ok o stk ol kst ok sk ok ok kR ok ok ok ko ok ok f
#define sparc 1 /x */
#include <stdio.h>

#include <math.h>
#include <stdlib.h>

#define pi (4*atan(1.0))
#define data_freq 1.0

#define data_rate 1.0/datafreq
#define sqr{x) (x)*(x)

[Ak Aok e s sk A A o oK ok o ok R Rk sk ok e ok ok o KRk ok ok ok e ok ko sk ok ki

[AokRdorsokdkokdkok kR dokkkkkkkxkkx Function Prototypes sk ook gk dolok kR ooR R kokokk 2.k kAkok [
3 sk sk e sk ok e ekl ol ok o KoK Rk o ok KR R ROk R o ok Rk R Rk kiR kR ok [

double setcutoff(double samplerate,
double cutoff);

void calcfilterweights(int numdelays,
double omega_c,

C-1

ol o o]

dcuble *contents,
double *weights);

int irbit2(unsigned long *bseed);

int datagen(double time,
double datarate,
int lastdata,
double xlasttime,
unsigned long *bseed,
int outputflag);
double lpf(double input,
int numdelays,
double *geights,
double *contents,
double gain);

double modulate(double input,
double carrierfreq,
double carrierampl,
double time);

void inittiaf(double *weights,
double *contents,
int numtaps,
double *error,
double *bias);

double tiaf(float input,
float desired,
float mu,
int numtaps,
double *error,
double *weights,
double *contents, double #*bias,
int frozen);

double demodulate(double input.
double carrierireq,
double phase,
double time);

float rani(int *idum);

float gasdev(int *idum);

double **inittdafwts(int sampersym,
int numtaps);

double *inittdafconts(int numtaps);

double tdaf(double input,
double desired,
double mu,
int sampersym,
int numtaps,
douvble *¥tdafwts,
double *tdafconts,
double *error,
double %*bias,
int frozen);

double *initerror(int sampersys);
double *initbias(int sampersym);
void nrerror(char error_text[]);

double *dvector(int nl,
int nh);

double **dmatrix(int nrl,
int nrh,
int ncl,
int nch);

float *vector(int nl,
int nh);

int manchester{int input,
double time,
double datarate,
double 1lasttime);

void free_dvector(double *v,
int nl,

int nh);

void free_dmatrix(double **m,

C-3

int nrl,
int nrh,
int ncl,
int nch);

int bipolar(int input);

/*******************************5\‘**************************************/

int main() {

unsigned long
numsamples,
bseed,
bitvar=0;

int numsymbols,
numfirtaps,
numtiaftaps,
numtdaftaps,
numfirdelays,
numtiafdelays,
numloops,
samplefreq,
count,
outputflag,
adaploops,
sample,
samplel,
loopnum,
dit=1,
d2t,
d3t=1,
d4t,
dst,
dét,
sampersym,
format,
shape,
tdafbiterror=0,
tiafbiterror=0,
offsetfound=0,
xsample,

C-4

[T SUPCRPRFE SR P

et s o e e g AP

bitcount = 0,
avgloops,
msecount = 0,
nseed,
-frozen=0;

double

samplerate,
datafreq
datarate
carrierfreq,
carrierampl,
noisegain,
misadjust,
mu,
deltaphase,
gainl,

data_freq,
data_rate,

_gain2,

tiafgain2,

avg = 0.0,
tiafavg = 0.0,
lpfin_cutoff,
lpfout_cutoff,
ilpfin_cutoff,
*1pfconts,
*1lpfuts,
*tiafwts,
*tiafconts,
*NNWts,
*nnconts,
xoutweights,
xoutcontents,
*tiafoutweights,

~*tiafoutcontents,

tiaferror = 0.0,
fiafbias = 0.0,
omega_c,
omega_cli,

time = 0.0,
sit, s2t, s3t,
s4t, s5t, s6t,
s7t, s8t,

x6t, x7t, x8t,
nnit, nn2t,
tdafbitnum=0.0,

g J

tiafbitnum=0.0,
dsrdbitnum=0.0,
s3tlast,
nn2tlast,
lasttime,
**tdafwts,
*tdafconts,
*tdaferror,
*tdafbias,
idatarate,
idatafreq,
ilasttime,
*ilpfconts, *ilpfuwts,
igaini,
icarrierfreq,
icarrierampl,
itime = 0.25,
iomega_c,
desiredpover,
interfpover;

float
xmse, ¥tempmse,
*tiafmse, *tiaftempmse,
adapfactor=0.1178,
loopfactor;

char
buffer[128];

FILE
*tdafvolt, *tiafvolt,
*dsrdvolt, *tdafvec,
*tiafvec, *numbers;

if ((tdafvolt = fopen("tdafvolt
printf (" *¥* Could not open

if ((tiafvolt = fopen(“tiafvolt
printf (" *** Could not open

if ((dsrdvolt = fopen("dsrdvolt
printf (" *** Could not open

.dat", "W")) == NULL)
tdafvolt.dat! **x \n");

.dat", "w")) == NULL)
tiafvolt.dat! *xx \n");

.dat", "W")) = NULL)
dsrdsolt.dat! ##* \n");

if ((tdafvec = fopen("tdafvec.dat", "w")) == NULL)

printf (" *x* Could not open

tdafvec.dat! *** \n");

if ((tiafvec = fopen(“"tiafvec.dat", "w")) == NULL)
printf (" *#*x Could not open tiafvec.dat! *¥* \n");

if ((numbers = fopen(''numbers.tex", "w")) == NULL)
printf (" x#x Could not open tdafnum.dat! *** \n");

/***

User Inpuat Section
stk ook sk ok sk ook sk sk kR sk skskok ok sk koo ok sk ok ot ok sk ek ok sk sk ok okok koo s Rk sk ko sk otk ok ok ok sk ok f

printf("Seed the random bit generator: ");
gets(buffer);

sscanf(buffer, "}U", &bseed);
printf("%d\n", bseed);

printf("Seed the AWGN Generator (integer < 0): ");
gets (buffer);

sscanf (buffer, *Jd", &nseed);

printf("/d\n", nseed);

printf ("Number of samples per symbol required: ");
gets(buffer);

sscanf(buffer, "/d", &sampersym);

printf("%d\n", sampersym);

samplefreq = sampersymk*datafreq;
samplerate = (double) 1.0/samplefregq;

printf(-..anchester (, ». Bipolar (1) format: ");
gets(buffer);

sscanf (buffer, "}d", &format);

printf("%d\n", format);

printf("Pulse shaping? (1=y, O=n): ");
gets(buffer);

sscanf (buffer, "%d", &shape);
printf("%d\n", shape);

printf ("Number of taps in the FIR filters: ");
gets(buffer);
sscanf (buffer, "/d", &numfirtaps);

printf ("/d\n", numfirtaps);

numfirdelays = numfirtaps - 1;

C-

-]

printf ("Number of taps in che TIAF adaptive filter: ");
gets(buffer);

sscanf (buffer, "4d", &numtiaftaps);

printf("%d\n", numtiaftaps);

numtiafdelays = numtiaftaps-1;

printf ("Number of taps in the TDAF adaptive filter: ");
gets(buffer);

sscanf (buffer, ")d", &numtdaftaps);

printf("%d\n", numtdaftaps);

printf("S0I pulse shaping LPF cutoff (Hz): ");
gets(buffer);

sscanf (buffer, "/1f", &.pfin_cutoff);

printf ("%f\n", lpfin_cutoff);

ilpfin_cutoff = lpfin_cutoff;

printf("Gain of pulse shaping LPF: ");
gets(buffer);

sscanf (buffer, "J1f", &gainl);
printf("%£f\n", gainl);

igainl = gaini;

printf("S0I carrier amplitude: ");
gets(buffer);

sscanf (buffer, "J1f", &carrierampl);
printf("/f\n", carrierampl);

desiredpower = (sqr(carrierampl))/2;

printf ("SOI carrier frequency: ");
gets(buffer);

sscanf (buffer, "J1f", &carrierfreq);
printf ("%f\n", carrierfreq);

printf ("Symbol frequency for the interferer: ");
gets(buffer);

sscanf (buffer, "41f", &idatafreq);

printf ("/f\n",idatafrzq);

idatarate = 1.0/idatafreq;

prirtf("SNOI carrier amplitude: ");
gets(buffer);

sscanf(buffer, "/1f", &icarrierampl);
printf("/f\n", icarrierampl);

interfpower = (sqr(icarrierampl))/2;

printf("SNOI carrier frequency: ");
gets (buffer);

sscanf (buffer, "J1f", &icarrierfreq);
printf("/f\n", icarrierfreq);

printf("Gain of output LPF: ");
gets(buffer);

sscanf (buffer, "J1f", &gain2);
printf("%f\n", gain2);

printf("Output LPF cutoff (Hz): ");
gets(buffer);

sscanf (buffer, "J1f", &lpfout_cutoff);
printf£("/f\n", lpfout_cutoff);

printf("Phase shift for demodulator: ");
gets(buffer);

sscanf (buffer, "J1f", &deltaphase);
printf("%f\n", deltaphase); .

printf("Noise factor: ");
gets(buffer);

sscanf (buffer, "/1f", &noisegain);
printf("%f\n", noisegain);

printf("Misadjustment factor: ");
gets(buffer);

sscanf (buffer, "/1f", &misadjust);
printf("%f\n", misadjust);

if (carrierfreq > 0.0)
mu = misadjust/((desiredpower + interfpower +
sqr(noisegain))* (numtdaftaps)) ;
else
mu = misadjust/((sqr(carrierampl) + sqr(icarrierampl) +
sqr(noisegain))*(numtdaftaps));

C-9

| I S

fprintf (numbers,"Mu = %f\n", mu);

printf ("Random data (1) or square wave (0): ");
gets(buffer);

sscanf (buffer, "/d", &outputflag);

printf ("}d\n", outputflag);

printf("Number of symbols in one epoch: ");
gets(buffer);

sscanf (buffer, "Ju", &numsymbols);
printf("%d\n", numsymbols);

numsamples = numsymbolsksampersym;

-

adaploops = ((adapfactor/mu)/numsymbols);

printf ("Number of epochs to average: ");
gets(buffer);

sscanf (buffer, "}d", &avgloops);
printf("%d\n", avgloops);

printf("Number of adapation epochs: ");
gets(buffer);

sscanf (buffer, "/d", &adaploops);
printf("%d\n", adaploops);

numloops = adaploops + avgloops;

sprintf (numbers,"Number of adaptation epochs: %d\n", adaploops);

fprintf (numbers,"Total number of epochs: %d\n", numloops);

printf(“Total number of epochs: %d\n", numloops);

fprintf (numbers, "Total number of post-adaptation symbols: %d\n",
numsymbols*avgloops) ;

loopfactor = 1.0/(numloops);

[sk skt ot ok ok sk s ok s ok ok ok sk Sk ke s oo sk sk o ot sk ok SR Kok s Sk o ok ek ek ok ok ok oK o sk ok o ok sk S Kk ok

Initialization Section
ok ook ok o o sk ok oo ok ok ok ok ks ok ok sk ok sk o o sk ok ok o sk ok s ki ok ok ok i ok s ok ok ok ok sk sk sk sk ko ok sk kb sk ko R ok ok ok f

if (shape == 1) {
lpfconts = dvector(0, numfirdelays);
lpfwts = dvector(0, numfirdelays);
ilpfconts = dvector(i, numfirtaps);
ilpfuts = dvector(1, numfirtaps);
omega_c = setcutoff (samplerate, 1pfin_cutoff);
iomega.c = setcutoff(samplerate, ilpfin_cutoff);
calcfilterweights (numfirdelays, omega_c, lpfconts, lpfwts);

C-10

calcfilterwveights (numfirdelays, iomega_c, ilpfconts, ilpfwts);

}

if (carrierfreq > 0.0) {
outweights = dvector(0, numfirdelays);
outcontents = dvector(0, numfirdelays);
tiafoutweights = dvector(0, numfirdelays);
tiafoutcontents = dvector(0, numfirdelays);

nnvts = dvector (0, numfirdelays);

nnconts = dvector(0, numfirdelays);

omega_cl = setcutoff(samplerate, lpfout_cutoff);
calcfilterwveights (numfirdelays, omega_cl, outcontents,

outweights);
calcfilterweights (numfirdelays, omega_cl, tiafoutcontents,
tiafoutweights);
calcfilterwveights (numfirdelays, omega_cl, nnconts, nnwts);
}
tiafwts = dvector(0, numtiafdelays);
tiafconts = dvector(0, numtiafdelays);

mse = vector(0, numsamples-1);
tempmse = vector(0, numsamples-1);
tiafmse = vector(0, numsamples-1);
tiaftempmse = vector(0, numsamples-1);

for (sample = O; sample < numsamples; ++sample) {
mse[sample] = 0.0;
tempmse[sample] = 0.0;
tiafmse[sample] = 0.0;
tiaftempmse[sample] = 0.0;

inittiaf(tiafwts, tiafconts, numtiaftaps, &tiaferror, &tiafbias);
tdafwts = inittdafwts(sampersym, numtdaftaps);

tdafconts = inittdafconts(numtdaftaps);

tdaferror = initerror(sampersym);

tdafbias = initbias(sampersym);

time = rani(&nseed);

lasttime = time-datarate;

itime = ranj(&nseed);

ilasttime = itime-idatarate;

[k ARk RSk o KR K KK KR A K ek KR KR K R AR K R R Rk o Sk ok SRRk

Simulation Section

C-1:

stk sk ok Sk sk e o ok o sk ok ek sk ok sk ok ke ok ok ok ok ok o ok sk ok sk ok ok sk ok ok ook skl skokoksk sk ki sk ke sk skokok sk ok kok sk skok

for (loopnum = 1; loopnum <= numloops; ++loopnum){
for (sample = 0; sample < numsamples; +tsample) {

[k ok otk Rk Rk ARk RO AR R K sk sk kKRR sk ok o o koo ook sk ek ko o
Interference (SHOI) Section
s ko sk Rk ok Aok ok o sk ko sk sk sk ok Rk R ok ok Kok Rk KRRk ok ok sk sk ok sk ok ok ok
if (icarrierampl > 0.0) {
dit = datagen(itime, idatarate, dit, &ilasttime,
- Zbseed, outputflag);

if (format == Q)

d2t = mar-hester(dit, itime, idatarate, ilasttime);
else .

d2t = bip,lar(dit);

if (shape == 1)

sit = 1pf(d2t, numfirdelays, ilpfwts, ilpfconts, igainl);
else

sit = dZ2t;

if (carrierfreq > 0.0)
s2t = modulate(slt, icarrierfreq, icarrierampl, itime);

else
s2t = sit;
}
else
s2t = 0.0;

[3k Rk dodok sk sk ok KRRk ok sk Rk R kR ok ok ok skodor s tok dokokok ok deor itk ok kR ok sk kol ok ok

Signal (SOI) Section
***/

d3t = datagen(time, datarate, d3t, &lasttime,
&bseed, outputflag);

if (format == 0)
d4t = manchester(d3t, time, datarate, lasttime);
else
d4t = bipolar(d3t);
s3tlast = s3t;
if (shape == 1)
s3t = lpf(d4t, numfirdelays, lpfwts, lpfconts, gaini);
else

s3t = d4t;,

if (carrierfreq > 0.0)

s4t = modulate(s3t, carrierfreq, carrierampl, time);
else

s4t = s3t;

/***

Channel Section
stk ok ok ko ok ok ok 3 ok sk ok ok o sk sk ok ok ok s ook ok ok 3 ok ok sk s sk sk sk ok s sk ok sk ok s ok e ok sk sk ko sk sk sk ok ok ok ok sk ok ok ok f

st = s4t + s2t + gasdev(&nseed)*noisegain;
[sk ke sk sk ok sk sk sk ok sk s ok o ok 3 ok ek ok R sk sk ok o sk ok s kR KKk ok sk ok o ok ke ok ok sk ok o ok ok sk sk R ok ok ok ok ok ek ok ok ok oK

TDAF Receiver Section
ek sk odeofe ok Sk sk ook ok Kok ok ok ok KoK ok KR e ok ok sk ok sk kKo ok sk sk ok stk sk sk R o ok ok o skokok

s6t = tdaf(sSt, s4t, mu, sampersym, numtdaftaps, tdafwts,
tdafconts, tdaferror, tdafbias, frozen);

if (carrierfréq > ¢ 4

s7t = demodulate(-., carrierfreq, deltaphase, time);
s8t = 1pf(s7t, numfirdelays, outweights, outcontents,
gain2);
}
else
s8t = sb%v;

/***i***********************

TIAY Receiver Section
**************%**/

x6t = tiaf(sS5t, s4t, mu, numtiaftaps, &tiaferror,
tiafwts, tiafconts, &tiafbias, frozen);

if (carrierfreq > 0.0) {

x7t = demodulate(x6t, carrierfreq, deltaphase, time);
x8t = 1pf(x7t, numfirdelays, tiafoutweights,
tiafoutcontents, gain2);
}
else
x8t = x6t;

/***

Noise Free Section
ke o ke e sk i o e ok ok sk o sk sk 3 sk ok e e stk ok o o stk ks ok sk ok Rk sk o o ook ok ok e e sk sk sk o ok sk ok ok oF kol ok sk ok f

13

nn2tlast = nn2t;
if (carrierfreq > 0.0) {
rnlt = demodulate(s4t, carrierfreq, deltaphase, time);

nn2t = 1lpf(nalt, numfirdelays, nnwts, nnconts, gain2);
}
else

nn2t = s4t;

time += samplerate;
itime += samplerate;

/***
End of Receiver section
#****************/
if ((loffsetfound) &% (loopnum == adaploops +1)){
if (((nn2t > 0.0) && (nn2tlast < 0.0)) |l
((nn2t < 0.0) && (nn2tlast > 0.0))) {
bitvar = 0;
tdafbitnum
tiafbitnum
dsrdbitnum
offsetfound = 1;

.
1
.

0
0
0

if (loopnum == numloops) {
fprintf(dsrdvolt, "%d %f\n", sample, nn2t);
fprintf(tdafvolt, "/i %f\n", sample, s8t);
fprintf(tiafvolt, "/i %£f\n", sample, x8t);

¥

if (loopnum > adaploops) {

frozen = 1;
tempmse[sample]=sqr(s4t-s6t)/desiredpover;
tiaftempmse [samplel=sqr(s4t-x6t)/desiredpower;
if (format) {

++bitvar;

tdafbitnum += s8t;

tiafbitnum += x8t;

dsrdbitnum += nn2t;

if (1 (bitvar 7 sampersym)) {

if (((tdafbitnum > 0.0) &% (dsrdbitnum < 0.0)) ||
((tdafbitnum < 0.0) && (dsrdoitnum > 0.0)))
++tdafbiterror;

C-14

if (((tiafbitnum > 0.0) &% (dsrdbitnum < 0.0)) ||
((tiafbitnum < 0.0) &% (dsrdbitnum > 0.0)))

++tiafbiterror;
++bitcount;
tdafbitnum = 0.0;
tiafbitnum = 0.0;
dsrdbitnum = 0.0;

}
} /* end if(format) */
} /% end if (Loopnum>adaploops) */
} /* Ends inner FOR loop */

if (loopnum > adaploops) {
++msecount;
for (samplel = 0; samplel < numsamples; ++samplel) {
mse[samplei]+=tempmse[samplell;
tiafmse[samplel]+=tiafiempmse[samplel];

} /* Ends outter FOR loop */

for (sa.ple = 0; sample < numsamples; ++sample) {
fprintf(tdafvec,")i %f\n", sample, (float) mse[sample]/msecount);
fprintf(tiafvec,"i %f\n", sample,
(float) tiafmse[sample]/msecount);
¥
avg = 0.0;
tiafavg = 0.0;
count = 0;
for (sample = 0; sample < numsamples; ++sample) {
avg += (double) mse[sample]/msecount;
tiafarg += (double) tiafmse[sample]/msecount;
++count;
}
avg/=count;
tiafavg/=count;
fprintf(numbers,"average error for TDAF: %f\n", avg);
fprintf(numbars,"average error for TIAF: Jf\n", tiafavg);
fprintf(numbers,"number of tdaf bit errors: Jd *, tdafbiterror);
fprintf(numbers,"for a bit error rate of Jf\u", (float)
tdafbiterror/bitcount);
fprintf(numbers,"number of tiaf bit errors: %d ", tiafbiterror);
fprintf(numbers,"for a bit error rate of Jf\n", (float)
tiafbiterror/bitcovat);

R

fclose(
fclose(
fcrose(
fclose(
fclose(
fclose(

return 0;

tdafvolt);
tiafvolt):
dsrdvolt);
tdafvec);
tiafvec);
numbers) ;

} /* Ends main() =/

[Rk kokokkok ok kok ko ok ok ok ok ok ok ok sk okofolRokob ok ok ok ktok ok ok sk ook ok ko f

double set

double
return

cutoff(double samplerate, double cutoff) {

temp = (2 * pi * cutoff * samplerate);
temp;

£33k ks o sk sk ok ok sk ok ok sk kKoK oF ek ke e ke ko sk okotok ok sk kor sk kb ok R ok ok f

void calcfilterweights(int numdelays, double omega_c,

d

int cou
double
double
double
double
double
double

ouble *contents, double #*weights) {
nt = -1;
normfactor = 1.0;

temp, window;

*contents_ptr = contents;

*yeight _ptr = weights;

*#array.end = weights + numdelays + i;
¥ = numdelays;

for (weight_ptr = weights; weight_ptr < array_end; ++weight_ptr) {

coun
*gon
++CO
temp
wind

if (
*

}

else

t 4= 1;
tents_ptr = 1.0;
ntents_ptr;
= count - (M/2);
ow = 0.54 - 0.46*xcos(2*pi*count/(M));
temp == 0) {
weight_ptr = windowrnormfactor;

C-16

|
i

*weight_ptr = windowx(sin(omega_c*temp))/(pi*temp)+*normfactor;

/***/

#define IB1 1

#define IB2 2

#define IB5 16

#define IB18 131072
#define MASK IB1+IB2+IBS

int irbit2(unsigned long *bseed) {
if (*bseed & IB18) {

*bseed = ((*bseed ~ MASK) << 1) | IB1;

return 1;

}

else {
¥bseed <<= 1;
return O;

}

[383Kk Rk s o oK Kok oK ok oK oK o K KoK o o ek ok sk ok K ok ke sk oK sk o ok o ok ok sk sk ok ok ok ok sk ok sk kok ok f

int datagen(double time, double datarate, int lastdata, double
*lasttime, unsigned long *bseed, int outputflag) {

int temp;
if (time >= (xlasttime + datarate)) o
xlasttime = time;
if (outputflag == 1) {
temp = irbit2(bseed);
}
else
temp = -lastdata;

else

temp = lastdata;
return temp;

}

/***/

double 1lpf(double input, int numdelays, double *ueights,
double *contents, double gair) {

int count;

double sum = O;

double *contents_nnd = contents + (numdelays);
double *weights_end = weights + (numdelays);

for (count = numdelays; count > 0; --count)
*(contents_end) = *(contents_end - 1);
sum += *weights_end * *contents_end;
~-contents_end;
--weights_end;
}

*contents = input;

sum += *weights * *contents;
return sum * gain;

7 skt skokokskeok ok ok sk sk ke sk sk ok sk sk i sk ok ok s e sk sk sk s ook e ok sk sk skok ke e sk 3k sk s sk ok sk skok ok sk sk ok f

double modulate(double input, double carrierfreq,
double carrierampl, double time) o

double temp = input*carrierampl#cos(2*pikcarrierfreg¥time);

return temp;

[Rkt o sk ok sk ok oK Kok o o sk ok ok sk ok ok oK ok ok sk s ok ok sk ok s o sk ok ok o sk ek ke kok ok ok ok sk ok

C-18

double demodulate(double input, double carrierfreq;.
doublc -phase, double time) {

double temp = 2 * input * cos(2 * pi * carrierfreq *
time + phase);
return temp;

}

[FRrskokdok ok oskkokokkook ook kskkkok koo ok sk ok ook ok sokok o kskokkookokskok [
/* The following routine was taken from
"Numerical Recipes in C" by Press et al. */

#define M1 259200
#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 243000
#define IA3 4561
#define IC3 51349

float rani(int *idum) {

static long ix1,ix2,ix3;
static float r[98];
float temp;

static int iff=0;

int j;

void nrerror();

if (xidum < O || iff == 0) {

iff=1;

ix1=(IC1-(*idum)) ¥ M1;

ixi=(IA1*ix1+IC1) ¥ M1;

ix2=ix1 % M2;

ix1=(IA1*ix1+IC1) ¥ M1;

ix3=ix1 ¥ M3;

for (j=1;j<=97;j++) {
ix1=(IA1*ix1+IC1) % Mi;
ix2=(IA2%ix2+1C2) ¥ M2;

r[jl=(ix1+ix2+RM2)*RM1;

}

*idum=1;
}
ix1=(TAL1*ixi+ICL). ¥ M1,
ix2=(TA2*ix2+IC2) ¥, M2;
ix3=(TA3*ix3+IC3) ¥ M3;
j=1 + ((97%ix3)/M3);
if (3 > 97 Il j < 1) nrerror("RAN1: This cannot happen.");
cemp=x[j];
rjl=(ix1+ix2*RM2) *RM1;
return temp;

#undef Mt

#undef IAl
#undef IC1
#undef RM1
#undef M2

#undef IA2
#undef IC2
#undef RM2
#undef M3

#undef IA3
¥undef IC3

/***/
/* The following routine was taken from
"Numerical Recipes in C" by Press et al. */

float gasdev(int *idum) {

static int iset=0;
static float gset;
float fac,r,vi,v2;
float rani();

if (iset == 0) {
do {
vi=2.0*rani(idum)-1.0;
v2=2.0*rani(idum)-1.0;
r=vikvi+v2*v2;
} while (r >= 1.0 || r == 0.0);
fac=sqrt(-2.0*log(r)/r);

C-20

gset=vi*fac;

iset=1;

return v2xfac;
} else {

iset=0;

return gset;

¥

R AR AAA A AR AAAK A A AR KR Aok kKoK ok ok ook ok Rk ok ok [
double **inittdafwts(int sampersym, int numtaps) {

int rownum, colnum;
double **tdafwts;
tdafwts = dmatrix(1, sampersym, 1, numtaps);

for (rownum = 1; rownum <= sampersym; ++rownum)
for (colnum = 1; colnum <= numtaps; ++colnum)

tdafwts [rownum] [colnum} = 0.0;

return tdafwts;

}

/***/
double *inittdafconts(int numtaps) {

int tapnum;

double *tdafconts;

tdafconts = dvector(l, numtaps);

for (tapnum = 1; tapnum <= numtaps; ++tapnum)
tdafconts[tapnum] = 0.0;

returr tdafconts;

}

/* “*******************&************************************/

douvle tdaf{double input, double desired, double mu,
int sampersym, int numtaps, double *¥tdafwts,
double *tdafconts, double *error, double #bias, int frozen) {

/**

This routine is the Time Dependent Adaptive Filter.
Input Parameters:

/

/

/

/

/ input - The value to be filtered.

/ desired: The training signal.

/ mu: Used to calculate the filter weights.
/ sampersym: The number of samples per symbol of
/ the input baseband data sequence.

/ The TDAF is made up of sampersym

/ TIAFs.

/ numtaps: The number of taps in each of the
/ member TIAFs making up the TDAF.

/ tdafwts: An n by m array where n = numtaps and
/ m = sampersym containing the current

/ filter coefficients of the TDAF.

/ tdafconts: A vector that holds the past values
/ of the input.

/ errox: A vector of length

/ sampersym that contains the quantity

/ "desired - sum" (see sum below) for each
/ TIAF in the TDAF.

/

/

/

/

/

/

/

/

/

/

/

/

Local Variables:

callnum: Used to calculate which TIAF supplies
the output for each call to the function
tapnum: Indexing variable for the taps of each
TIAF.
filternum: The index that points to the TIAF
that supplies the output of the function.
sum: Holds the intermediate and final value
of the output of the function.

stk ok sk ke o e sk stk sk e e ok o sk ok sk sk sl sk ke gk sk e sk o o ok o ok sk sk ok ok ok ok ke KKK ok sk ok ok ke ok f

static int callnum = O;

int tapnum, filternum;

double sum = 0.0;

filternum = (callnum %, sampersym) + 1;

++callnum;
/* Shift data in filter to the right... */
for (tapnum = numtaps; tapnum > 1; --tapnum) {

tdafconts[tapnum] = tdafconts[tapnum - 1];
/* and calculate the output due to the past values */

C-22

o

sum- += tdafconts[tapnum] * tdafwts[filterngm][tapnumjg
}
/* Now- shift the input into tap number 1 */
tdafconts[1] = input;
sum += tdafconts[1] * tdafwts[filternum] [1];
/* Add the contribution due to the bias weight */
sum += bias[filternum];
/* Calculate the error */
error[filternum] = désired - sum;
/* Update the filterweights for the next call */
if (1frozem) {
for (tapnum = 1; tapnum <= numtaps; ++tapnum) {
tdafwts [filternum] [tapnum] += 2 * mu * error[filternum]
* tdafconts[tapnum];
}
/* Upcate the bias weight */
bias[filternum] += 2 * mu * error[filternum];
}

return sum;

J Rk ko sk skook sk ko okok sk ok ok ik sk sk sk ok sk ok ok kR ok ke Rk ok Skt kol ok Sekok ok ok ok
double *initerror(int sampersym) {

int filternum;

double *error;

error = dvector(l, sampersynm);

for (filternum = 1; filternum <= sampersym; ++filternum)
error[filternum] = 0.0;

return error;

JFHFHAAAAFAAAAAKAAAAAAA A AAAK KA AAF A FAA AR AAAKAAAAKAAAAAAAK [
dout-le xinitbias(int sampersym) {

int filternum;

¢-,uble *bias;

bias = dvector(l, sampersym); -

for (filternum=1;filternum<=sampersym;++filternum)
ias(filternum] = 0.0;

return bias;

C-23

}

[kl ok ookl olorkok okl kokok ok ok ok Rk kok f
/* The following routine was taken from
“Numerical Recipes in C" by Press et al. */

void nrerror(char error_text[]) {

fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,")s\n",error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(1);

/************:"K********% "WP'***********************************/
/* The following routine was taken from
"Numerical Recipes in C" by Press et al. */

double *dvector(int nl, int nh) {
double *v;

v=(double *)malloc((unsigned) (nh-nl+1)#*sizeof(double));
if (t'v) nrerror("allocation failure in dvector()");
return v-nl;

3

[REE A F AR K AR AR A A IARA KA AAA A AR AAHA AR KK F A KKKk [
/* The following routine was taken from
"Numerical Recipes in C" by Press et al. x/

double **dmatrix(int nrl, int nrh, int ncl, int nch) {

int i;
double **m;

m=(double **) malloc((unsigned) (nrh-nrl+1)*sizeof(doublex));
if ('m) nrerror(“allocation failure 1 in dmatrix()");
m -= nrl;

for(i=nrl;i<=nrh;i++) {
m{i]l=(double *) malloc((unsigned) (nch-ncl+i)*sizeof(double));
if (!mf{i]) nrerror("allocation failure 2 in dmatrix()");
m[i] -= ncl; '

¥

return m;

}

[k kok e e Rk ok sk ok ok okok oK sk ok ok sk ok ok ok sk ks ok ok sk kol sk ok sk sk sk kol ook ok kR ok ook f

int manchester(int input, double time, double datarate,; double lasttime) {
- int templ, temp2;
if (time > (lasttime + datarate/2:0))
templ = abs(input-1);
else
templ = input;
if (tempi == 1)

temp2 = 1;
else
temp2 = -1;

return temp2;

[HE Rk koo ok Kok Rk Rk Rk sk ok Rk ook sk ok ok skokkkokkskok ok ok ok ok K
/* The following routine was taken from
"Numerical Recipes in C" by Press et al. */

void free_dmatrix(double **m, int nrl, int nrh, int ncl, int nch)

{
int i:
for(i=nrh;i>=nrl;i--) free((char*) (m[iJ+ncl));
free((char*) (m+nrl));

}

[tk sk ok sk kool ok ko ook ok sk otk ook kR kok ok skl ok ok KKk f
/* The following routine was taken from
"Humerical Recipes in C" by Press et al. */

void free_dvector(double *v, int nl, int nh)

{
free((char*) (v+nl));
}

[k ks Rk ok Rk Ak Rk ok ko k ook kol Rk kol ok ko ek Rk ok [
/* The following routine was taken from
"Numerical Recipes in C" by Press et al. */

R A i

float *vector(int nl,int nh) {

float *v;

v=(float *)malloc((unsignéd) (nh-nl+1)*sizeof(float);
if ('v) nrerror(*"allocation failure in vector()");
return v-nl;

}

[ko sk s sk ok ok ok sk ok sk ok sk ok ok ko sk sk ok ok ok o ok ok K s s ko skok ok sk koke ok ok koK o ok ok ok kK ok f

void inittiaf (double *weights, double *contents, int numtaps,
double *error, double *bias) {

int count;
*error = 0.0;
xbias = 0.0;

for (count = 0; count < numtaps; ++count) {

*(weights + count) = O;
x(contents + count) = 0;
}

}

/***l

double tiaf (float input, float desired, float mu, int numtaps,
double *error, double *weights, double
*contents, double *bias, int frozen) {

int numdelays = numtaps - 1;
int count;
doulle sum

0.0;

for (count = numdelays; count > 0; --count) {

contents[count] = contents[count - 1];
sum += contents[count] * weights[count];

}
contents[0] = input;

sum += contents(0] * weights[0];
sum += *bias;

-26

*error = desired - sum;

if {!frozen) { .
for (count = 0; count < numtaps; ++count)
weights[count] += 2 * mu * *error * contents[count];
*bias += 2 * mu * *error;

}

xeturn sum;
/***/

int bipolar(int input) {

if (input == 1)

: return 1;
: else
return -1;

}

. [Atk ko sk sk ok ok sk sk sk o ok ook sk sk s ok o ke ok stk sk ok ok sk s ok ok Kok sk ok sk ok ek ek ok ok ok f

Appendix D. Source Code for the LC Version

J T g L T T e e s 2
/**** This program is a simulated digital communication system #*¥ikxk*/
[etk sk sk e ok o e ok sk s ok ook ke ok o ke kool koK sk sk e s o ke sk o ok e sk sk ook e sk sk e o ke s ok stk o ok ok ok ke sk y ke f
/* 30 Sep 91: Made number of symbols for simulation user selectable /
/ Executable file: 1lrncrv /
[ket e s e e e sk e s sk sk ok e e ok e ok ok ok s ok o ok sk sk s s ok ok e s sied sk ok ok ek ki K KR KRk Rk K% £ Kok ok k ok f
#define sparc 1

#include <stdio.h>
#include <math.h>

#include <stdlib.h>

[A dodok gk ook ok sk ok ke ke ok sk sk e ok o ok ke alok o skok ok ok ke e ke e sk ke ke kol ok ok f

#define pi (4*atan(1.0))
#define data_freq 1.0

#define data_rate 1.0/datafreq
#define sqr(x) . (x)*(x)

[EFA R Aok Rk R Rk Rk o ROk R Aok R kR R R g A Rk Kk R ok ke [
/* Function Prototypes */

/* Refer to Appendix A - A1l Functions are the same */
/**/
int main() {

unsigned long numsamples;
int numfirtaps. numtiaftaps, numtdaftaps;

int numfirdelays, numtiafdelays;
int numloops;

int samplefreq;

int count;

int outputflag;
int numsym;
float loopfactor;
double samplerate;

L et g

double datafreq = data.freq;
donble datarate data_rate;
double carrierfreq;

double carrierampl;

double noisegain;

double misadjust;

double mu;

double deltaphase;

double gaini;

double gain2;

double tiafgain2; i
duuple avg = 0.0; ;
double tiafavg = 0.0;

double lpfin_.cutoff, lpfout_cutoff, ilpfin_cutoff; ¥
char buffer([128]; :

Lt L d 0, gt P

[}]
.

iy g 0 B g

I e S

double *lpfconts, *lpfuts;

double *nnwts, *nnconts;

double *tiafwts, *tiafconts;

double *outweights, *outcontents;

double *tiafoutweights, *tiafoutcontents;
double *mse, *tempmse; :
double *tiafmse, *tiaftempmse;

double tiaferror = 0.0;

double tiafbias = 0.0;

int sample, samplel, loopnum;

int dit=1, d2t, d4d3t=1, d4t, d5t, dét;
int sampersym;

int format;

int shape;

double omega_c;

double omega.cil; :
double time = 0.0; :
double sit, s2t, s3t, s4t, sb5t, sb6t, s7t, s8t;
double x6t, x7t, x8t;

double nnit, nn2t;

unsigred long int bseed;

T

TR

int nseed;
double lasttime = -datarate;

double *¥tdafwts;
double *tdafconts;
double *tdaferror;
double *tdafbias;

D-2

double *tdafsymbolmse;
double *tiafsymbolmse;

int msecount;

int msesize;

int mseindex = O;

int numsymbols;

double idatarate;

double idatafreq;

double ilasttime;
unsigned long int ibseed;
double *ilpfconts, *ilpfwts;
double igaini;

double icarrierfreq;
double icarrierampl;
double itime = 0.25;
double iocmega._c;

float adapfactor = 0.1178;
double desiredpower;
double interfpower;

int loopcount = 0;

FILE #tdaflrn, *tiaflrn, *lnumbers;

if ((tdaflvn = fopen("tdaflrn.dat", "w")) == NULL)
printf (" *x** Could not open tdaflrn.dat! #*x \n");

if ((tiaflrn = fopen("tiaflrn.dat", "w")) == NULL)
printf (" *** Could not open tiaflrn.dat! **x \n");

if ((lnumbers = fopen("lnumbers.tex", "w")) == NULL)
printf (" #** Could not open lnumbers.tex! *¥* \n");

printf("Seed the random bit generator: ");
gets(buffer);

sscanf (buffer, "}U", &bseed);
printf("/d\n", bseed);

printf("Seed the AWGN Generator (integer < 0): ");
gets(buffer);

sscaunf (buffer, "/d", &nseed);

piintf("%d\n", nseed);

:xintf("NUmber of samples per symbol required: ")
gets(buffer);

D-3

sscanf (buffer, "%d", &sampersynm);
printf("%d\n", sampersym);

samplefreq = sampersymxdatafreq;
samplerate = (double) 1.0/samplefreq;

printf(“"Manchester (0) or Bipolar (1) format: ™);
gets(buffer);

sscanf (buffer, "%d", &format);

printf("%d\n", format);

printf("Pulse shaping? (1=y, 0=n): ");
gets(buffer);

sscanf (buffer, "%d", &shape);
printf("%d\n", shape);

printf("Number of taps in the FIR filters: ");
gets(buffer);

sscanf (buffer, "%d", &numfirtaps);
printf("%d\n", numfirtaps);

numfirdelays = numfirtaps - 1;

printf ("Number of taps in the TIAF adaptive filter:
gets(buffer);

sscanf (buffer, "/d", &numtiaftaps);

printf("%d\n", numtiaftaps);

numtiafdelays = numtiaftaps-1;

printf("Number of taps in the TDAF adaptive filter:
gets(buffer);

sscanf (buffer, "%d", &numtdaftaps);

printf("jd\n", numtdaftabs);

printf("SOI pulse shaping LPF cutoff (Hz): ");
gets(buffer);

sscanf(buffer, "41f", &lpfin_cutoff);
printf("%f\n", lpfin_cutoff);

ilpfin_cutoff = lpfin_cutoff;
printf("Gain of pulse shéping LPF: ");

gets(buffer); i
sscanf (buffer, "J1f", -&gaini); -

D-4

");

")

printf("/f\n", gainl);
igainl = gaini;

printf("S0I carrier amplitude: ");
gets(buffer);

sscanf (buffer, "}1f", &carrierampl);
printf("}f\n", carrierampl);

desiredpower = sqr(carrierampl)/2;

printf("S0I carrier frequency: ");
gets(buffer);

sscanf(buffer, "/1f", &carrierfreq);
printf("/f\n", carrierfreq);

printf("Symbol frequency for the interferer: ");
gets(buffer);

sscanf (buffer, "J1f", &idatafreq);
printf("%£f\n",idatafreq);

idatarate = 1.0/idatafreq;

printf('SNOI carrier amplitude: ");
gets (buffer);

sscanf (buffer, "/1f", &icarrierampl);
printf("}f\n", icarrierampl);

interfpower = sqr(icarrierampl)/2;

printf("SNOI carrier frequency: ");
gets(buffer);

sscanf(buffer, "}1f", &icarrierfreq);
printf("/f\n", icarrierfreq);

printf("Gain of output LPF: ");
gets(buffer);

sscanf(buffer, "J1f", &gain2);
printf("%f\n", gain2);

printf ("Output LPF cutoff (Hz): ");
gets (buffer); ’ :
sscanf (buffer, "%1f", &lpfout_cutoff);
printf(")£\n", lpfout_cutoff);

printf ("Phase shift for demodulator: ");
gets(buffer);

sscanf (buffer, "/1f", &deltaphase);
printf("%f\n", deltaphase);

printf("Noise factor: ");
gets(buffer);

sscanf (buffer, "/1f", &noisegain);
printf ("%f\n", noisegain);

printf(“"Misadjustment factor: ");
gets(buffer);

sscanf (buffer, "/1f", &misadjust);
printf ("/f\n", misadjust);

if (carrierfreq > 0.0)
mu = misadjust/((desiredpower + interfpower +
sqr(noisegain))*(numtdaftaps)) ;
else

mu = misadjust/((sqr{carrierampl) + sqr(icarrierampl) +

sqr(noisegain))*(numtdaftaps)) ;

printf("Mu = %.10g\n", mu);
fprintf (lnumbers,”Mu = .10g\n", mu);

printf ("Random data (1) or square wave (0): ");
gets(buffer);

sscanf (buffer, "¥d", &outputflag);
printf("/d\n", outputflag);

printf ("Number of epochs: ");
gets(buffer);

sscanf (buffer, "/d", &numloops);
printf("%d\n", numloops);

printf ("Number of symbols to average: ");
gets (buffer);

sscanf (buffer, "%d", &numsym);
printf("%d\n", numsym);

printf ("Number of symbols in simulation: ");
gets(buffer);

sscanf (buffer, "}d", &numsymbols);
printf("}d\n", numsymbols);

D-6

|
v
i
‘i

]
j
§
|

numsamples = numsymbols * sampersym;
fprintf(lnumbers,"Number of symbols in learing curve: %d\n",
numsymbols);

loopfactor = 1.0/(humloops);

if (shape == 1) {
lpfconts = dvector(0, numfirdelays);
lpfwts = dvector(0, numfirdelays);
ilpfconts = dvector(i, numfirtaps);
ilpfuts = dvector(l, numfirtaps);
omega_c = setcutoff(samplerate, lpfin_cutoff);
iomega_c = setcutoff(samplerate, ilpfin_cutoff):
calcfilterweights (numfirdelays, omega_c, lpfconts, lpfwts);
calcfilterweights (numfirdelays, iomega_c, ilpfconts, ilpfwts);

if (carrierfreq > 0.0) {

outweights = dvector(0, numfirdelays);
outcontents = dvector(0, numfirdelays);
tiafoutweights = dvector(0, numfirdelays);
tiafoutcontents = dvector(0, numfirdelays);
nnwts = dvector(0, numfirdelays);

nnconts = dvector(0, numfirdelays);

omega_cl = setcutoff(samplerate, lpfout_cutoff);

calcfilterweights (numfirdelays, omega.cl, outcontents,
outweights);

calcfilteérveights (numfirdelays, omega_ci, tiafoutcontents,
tiafoutweights);

calcfilterweights (numfirdelays, omega_cl, nnconts, nnwts);

tiafuts = dvector(0, numtiafdelays);
tiafconts = dvector(0, numtiafdelays);
msesize = numsamples/sampersym;

mse = dvector(0, msesize - 1);

tempmse = dvector(0, msesize ~ 1);

tiafmse = dvector(0, msesize - 1);
tiaftempmse = dvector(0, msesize - 1);
tdafsymbolmse = dvector(0, sampersym-1);
tiafsymbolmse = dvector(Qd, sampersym-1);

for (sample = 0; sample < msesize; ++sample) {
msé[sample] = 0.0;
tempmse[sample] = 0.0;

tiafmse[sample] = 0.0;
tiaftempmse [sample] = 0.0;
}

for (loopnum = 1; loopnum <= numloops; #++loopnum){

inittiaf{tiafwts, tiafconts, numtiaftaps, &tiaferror, &tiafbias);

tdafwts = inittdafwts(sampersym, numtdaftaps);
t.dafconts = inittdafconts(numtdaftaps);
tdaferror = initerror{sampersym);

~dafbias = initbias(sampersym);

msecount 0;

time = rani{(&nseed);

lasttime = time-datarate;

itime = rani(&nseed);

ilasttime = ivime-idatarate;

1

for (sample = O; sample < numsamples; ++sample) {

/***********************#***********************************
Interference (5NOI) Section
***/
if (icarrierampl > 0.0) {
dit = datagen(itime, idatarate, dit, &ilasttime,
&ibseed, outputflag);

if (format == 0)

d2t = manchester(dit, itime, idatarate, ilasttime);

else
d2t = bipolar(dit);

if (shape == 1)

sit = 1pf(d2t, numfirdelays, ilpfwts, ilpfconts, igainil);

else
sit = d2t;

if (carrierfreq > 0.0)

s2t = modulate(sit, icarrierfreq, icarrierampl, itiwaz);

else
s2t = sit;
}
else
s2t = 0.0;

[HFAFKRAAFAAKAAAAAAA KA FAAAKFA KA A A AAAAAAFAAKF A KA A A F KKK
Signal (SOI) Section

D-8

sk ko ok sk ok ok sk ok ok ok KR 3k ok sk ook ok ok s ook ok ok ok ok ok ok SOk sk ok ok ko ok ok ok ok sk ok ok okl Sk ok

d3t = detagen(time, datarate, d3t, &lasttime,
&bseed, outputflag);

if (format == 0)

d4t = manchester(d3t, time, datarate, lasttimat-
else
d4t = bipolar(d3t);

if (shape == 1)

s3t = lpf{d4t, numfirdelays, lpfwts, lpfconts, gaii:i.,
elss
s3t = d4t;

if (carrierfreq > 0.0)

s4t = modulate(s3t, carriexfreq, carrierampl, time);
else

s4t = e3t;

/*******#***

Channex Section
stk sk s o R %ok ok ok oK K oK ok o kKoK R ok sk ok sk sk o ok ok sk Kok ok sk ook ok ok sk ok ok ok sk ok koK sk ok K ok f

st = s4t + s2t + gusdev(&nseed)*noisega.n;

[ke ok s sk Kok sk sk sk ok sk ok ok sk ok Kk ok sk sk sk ok ko sk ok sk sk sk sk kol ok sk ok ok sk sk s ok skak sk ook ok sk skl sk ok o e

.

TDAF Receiver Section
stk ok o o oK ok KoKk o o o K sk KK oK ke sk sk o sk ok ok ok ok sk sk ok ok K ok koK oK oK ok ok K KoK sk ok K ok K Kok ok k% [

s6t = tdaf(s5t, s4t, mu, sampersym, numtdaftaps, tdafwts,

tdafconts, tdaferror, tdafbias);

if (carrierfreq > 0) {

s7t = demodulate(s6t, carrierfreq, deltaphase, time);
s8t = 1pf(sTt, numfirdelays, outweights, outcontents,
gain2);
}
else -
s8t = sbt;

[AK etk sk sk sk ok ok ks ok sk e ok Kok sk sk ke o ok ok Aok ok oK Kk sk sk ok ok o Kok o o 2k ok ks sk ok e

TIAF Receiver Section
sk ok KRR R R Ko kR R AR R R kR KRRk kKR R

i D-9

i
P

x6t = tiaf(s5t, s4t, mu, numtiaftaps, &tiaferror,
tiafwts, tiafzonts, &tiafbias);

if (carrierfreq > 6.0) {
x7t = demodulate{x6t, carrierfreq, deltaphase, “ime);

x8t = 1pf(x7t, numfirdelays, tiafoutweights,
tiafoutcontents, gain2);
}
else
x8t = x6t;

[ol sk ok sk ok ke sk sk sk sk ok sk ok o sk stokok s ok sk ok ok sk sk ke s s sk ok ok ok sk ok ok st sk ok ok sk ok sk sk sk o ok ok sk skeok ok sk ok ok

Noise Free Section
************%***************************************k******/

if (carrierfreq > 0.0) {

nnit = demodulate(s4t, carrierfreq, deltaphase, time);
nn2t = lpf{nnit, numfirdelays, nnwts, nnconts, gain2);
}
else
nn2t = s4t;

time += samplerate;
itime += samplerate;

mseindex = sample }, sampersym;
tdafsymbolmse [mseindex] = (sqr(s4t-s6t))/(desiredpower);
if (mseindex == (sampersym - 1)) {

avg = 0.0;

for (samplel = 0; samplel < sampersym; ++samplel) {

avg += tdafsymbolmse[samplel];

}

tempmse [msecoun'.} = avg/sampersym;

++msecount ;

if (sampie < msesize)
tiaftempmse[sample] = (sqr(s4t - x6t))/{desizzdpower);

} /* Ends inner FOR loop */

++loopcount;)

for (samplel = 0; samplel < msSesize; ++samplel) {
mse[samplei] +=tempmse [samplel];
tiafmse[samplelj+=tiaftempmse [samplel];

3

free_dmatrix(tdafwts, 1, sampersym, 1, numtdaftaps);
{ree_dvector(tdafconts, 1, numtdaftaps);

D-10

free.dvector(tdaferror, 1, sampersym);
free.dvector(tdafbias, 1, sampersym);

} /* Ends outter FOR loop */
for (sample = 0; sample < msesize; ++sample) {
fprintf(tdaflrn,"}i %£\n", sample, (float) mse[sample]/loopcount);
fprintf(tiaflrn,"/i f\n", sampie,
(float) tiafmse[sample]*loopfactor);

3

avg = 0.0;

tiafavg = 0.0;

count = 0;

for

(sample = 0; sample < msesize-numsym; ++sample) {

avg += mse[sample]/loopcount;
tiafavg += tiafmse[sample]/loopcount;
++count;

}

avg/=count;

tiafavg/=count;

fprintf (lnumbers,"average error for TDAF over /d samples: /f\n",
numsym, avg);

fprintf(inumbers,"average error for TIAF over /d samples: %f\n",
numsym, tiafavg);

fclose(tdaflrn);
fclose(tiaflrn);
fclose(lnumbars);

return 0;

} /* Ends main() */

D-1]

v

-~

10.

11.

Bibliography

. Ear] R. Terrara, Jr. and Bernard Widrow. “The Time Sequenced Adaptive

Filter,” IEEE Transactions on Acoustics, Speech-and Signal Processing, ASSP
- 29(3) (June 1981).

Gardner, William A. “Exploitation of Spectral Redundancy in Cyclostationary
Signals,” [EEE Signal Processing Magazine, 8:14-36 (apr 1991).

. Kennedy, K. J. and E. K. Koh. “Frequency-Reuse Interferency in TDMA/QPSK

Satellite Systems.” Fifth International Conference on Digital Satellite Comma-
nications. 99-107. March 1981.

. Nicholson, David L., “Introduction to Cyclostationary Signal Processing.” A

white-paper provided by the author, Mar 1991.

Oppenheim, Allan V. and Ronald W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

. Press, William H. and others. Numerical Recipes in C: the Art of Scientific

Computing. New York: Cambridge University Press, 1989.

. Reed, Jeffrey H. Time-Dependent Adaptive Filters for Interference Rejection.

Ph.D. dissertation, Department of Electrical Engineering and Computer Sci-
ence, University of California, Davis, Dec 1987.

. Shanmugan, K. Sam and Arthur M. Breipohl. Random Signals: Detection,

Estimation, and Dala Analysis. New York: John Wiley and Sons, 1988.

Sklar, Bernard. Digital Communications, Fundamentals and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1988.

Widrow, Bernard and Samuel D. Stearns. Adaplive Signal Processing. Engle-
wood Cliffs NJ: Prentice Hall, 19S5.

Williams, Robert, “Course Notes - EENG 791, Advanced Digital Signal Process-
ing.” School of Engineering, Air Force Institute of Technology, (AU), Wright-
Patterson AFB OH, March 1991.

BIB-1

»]]
I

Form =Approved !
H

REPORT DOCUMENTATION PAGE | owmomons

-§ Pubnc reporting Suraen IGr this «IIechicn Lt A1ormatien s £stimatea 1o 3verage « Nour per response, MNC.Lting the time 101 reviewing nstructicns, searcNgG existing ¢atd sources,
-1 gqamenng ana maintaiming the 4a13 needes, ana (OMDIELNg ING reviewing tne wCllection of intormation. Sena comments F€garding this burden ssumate or-any Stier aspect of the

<oHecucn ot «atIrMatON, MNLUSING 3UGSLITONS tGr réduung thiy Surcen, ¢ A ashington readquarters Services, cnrectorate for information Oceraticns and Repcrts, lllS setterson
“§ Davis mgrway, suite 1204, sinngtan, s34 222021302, and to the Office of Management and Budger, Paperwcrk Reducticn Project (0764-0188), wWasnington, SC 20503.

| 1.”AGENCY USE ONLY (Leave blank) }2. REPORT DATE 3. REPORT TYPE AND-DATES COVERED T

S . December 1991 Masters Thesns) o
{4.TITLE AND-SUBTITLE 5. FUNDING NUMBERS B

A Time-Dependent Adaptive Filter for Cochannel Interference
Reduction

1. AUTHOR(S)
Matthew H. Foster, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT_-NUMBER
Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GE/ENG /91D-19

. , | :
{ 9- SPONSORING. MONITGRING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSGRING . MONITCRING
! AGENCY REPGRT NUMBER
FTC/DXSI, WPAFB OH 45433-6508
!
i 11. SUPPLEMENTARY NOTES
] _
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution un]imited

13. ABSTRACT (Maximum 200 words)

This thesis presents a Time Dependent Adaptive Filter (TDAF) which exploits the cyclostationarity of digitally
modulated communications signals and seeks to improve the Signal to Interference Ratio (SIR) and Signal to ~
Noise Ratio (SNR) of such signals. The TDAF is imbedded in a computer simulation of a simple communication |
system consisting of a data source, data formatter, pulse shaping filter, BPSK modulator, and demodulator.
In the simulation the TDAF and a Time Independent Adaptive Filter (TIAF) attempt to extract the Signal of
Interest (SOI) from noise or intcrference. The criteria of Mean Squared Error (MSE) is used as the primary _
means to compare the performance of the two adaptive filters. Plots of MSE improvement in interference and
MSE improvement in noise are presented. For the case of interference, the improvement is measured as 2 function ,
of the baud rate of the intereference signal, and carrier frequency of the interference signal. It is shown that
with respect to the TIAF, the TDATF provides up to 3 dB of improvement in a noisy evironment, and up to 12
dB of improvement in an environment characterized by strong interference. Bit Error Rates (BER) for several
simulations are presented. The data Indicate that signficant improvements in BER might also be expected when
a TDAF is used in lieu of a TIAF.

- _ e

Ta. SUBJECT TERMS — 7 ; ’ ’ 5. NUMBER OF PAGES
Adaptive Filters, Cyclosati ity, Si ocessing, Simulation 119 _____
\daptive , Cyclosationarity, Signal Pr £, 16, PRICECODE
{77 SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT ;
4 Unclassified | _ Unclassified - Unclassified == _ UL |
NSN:7530.01-280-5500 — — o Standard Form 238 (Rev. 289

Pmcnbnd by anst $ta. 239-13
298-102

